

# **OPERATING INSTRUCTIONS**



Original

# **SPEEDAIR 3050**

**Container Closure Integrity Test** 



### **Disclaimer of liability**

These operating instructions describe all models and variants of your product. Note that your product may not be equipped with all features described in this document. Pfeiffer Vacuum constantly adapts its products to the latest state of the art without prior notice. Please take into account that online operating instructions can deviate from the printed operating instructions supplied with your product.

Furthermore, Pfeiffer Vacuum assumes no responsibility or liability for damage resulting from the use of the product that contradicts its proper use or is explicitly defined as foreseeable misuse.

## Copyright

This document is the intellectual property of Pfeiffer Vacuum and all contents of this document are protected by copyright. They may not be copied, altered, reproduced or published without the prior written permission of Pfeiffer Vacuum.

We reserve the right to make changes to the technical data and information in this document.

## Table of contents

| 1 | About this manual                       | 5  |
|---|-----------------------------------------|----|
|   | 1.1 Validity                            | 5  |
|   | 1.1.1 Applicable documents              | 5  |
|   | 1.1.2 Products concerned                | 5  |
|   | 1.2 Target group                        | 5  |
|   | 1.3 Conventions                         | 5  |
|   | 1.3.1 Instructions in the text          | 5  |
|   | 1.3.2 Pictographs                       | 6  |
|   | 1 3 3 Labels                            | 6  |
|   | 1.3.4 Abbreviations                     | 6  |
|   |                                         | 5  |
| 2 | Safety                                  | 7  |
|   | 2.1 General safety information          | 7  |
|   | 2.1.1 Safety instructions               | 7  |
|   | 2.1.2 Precautions                       | 8  |
|   | 2.2 Intended use                        | 8  |
|   | 2.3 Foreseeable misuse                  | 8  |
| 3 | Transportation and Storage              | ٩  |
| Ŭ | 3.1 Receipt of the product              | 9  |
|   | 3.2 Unpacking                           | 9  |
|   | 3.3 Handling                            | 9  |
|   | 3.4 Storage                             | 9  |
|   | J.+ Otorage                             | 9  |
| 4 | Product description                     | 10 |
|   | 4.1 Product identification              | 10 |
|   | 4.2 Scope of delivery                   | 10 |
|   | 4.3 Variants                            | 10 |
|   | 4.4 Overview                            | 10 |
|   | 4.5 SpeedAir 3050 softwares             | 10 |
|   | 4.6 Human/machine interface             | 12 |
|   | 4.7 Remote I/O                          | 12 |
| 5 | Installation                            | 15 |
| Ŭ | 5.1 Locating                            | 15 |
|   | 5.2 Compressed dry air (CDA) connection | 15 |
|   | 5.3 Vacuum source and connection        | 16 |
|   | 5.4 Venting gas circuit connection      | 10 |
|   | 5.4 Venting gas circuit connection      | 10 |
|   | 5.5 Mains connection                    | 19 |
|   | 5.0 Inputs - Outputs - Communications   | 18 |
|   | 5.7 OOT lixiule                         | 18 |
| 6 | Commissioning                           | 19 |
|   | 6.1 Acclimate                           | 19 |
|   | 6.2 Communications                      | 19 |
|   | 6.3 Initial operation                   | 19 |
|   | 6.4 LeakRx Access rights                | 20 |
|   | 6.5 LeakRx First launching              | 20 |
|   | 6.6 LeakRx Change password              | 21 |
| 7 | Display screens                         | 22 |
|   | 7 1 Main                                | 22 |
|   | 7.2 Setup                               | 22 |
|   | 7.2.1 SetunID selection                 | 22 |
|   | 7.2.2 Relative measurement              | 23 |
|   | 7.2.2 Test type                         | 23 |
|   | 7.2.4 Audit Trail                       | 23 |
|   |                                         | 24 |

|    | <ul> <li>7.3 Run</li> <li>7.4 Maintenance</li> <li>7.5 Sensor Configuration</li> <li>7.6 Reports</li> <li>7.7 Analysis</li> <li>7.8 System</li> </ul>                                                                                                      | 25<br>26<br>27<br>28<br>28<br>29                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 8  | Testing8.1Standard test sequence8.2Setting parameter in new Setup ID (recipe)8.3Verification procedure                                                                                                                                                     | <b>30</b><br>30<br>33<br>34                                     |
| 9  | Shut down<br>9.1 Standard shutdown procedure                                                                                                                                                                                                               | <b>35</b><br>35                                                 |
| 10 | <b>Decommissioning</b><br>10.1 Shutting down for longer periods<br>10.2 Recommissioning<br>10.3 Disposal                                                                                                                                                   | <b>36</b><br>36<br>36<br>36                                     |
| 11 | <b>Malfunctions</b><br>11.1 Troubleshooting guide                                                                                                                                                                                                          | <b>37</b><br>37                                                 |
| 12 | Maintenance12.1Maintenance frequency and responsibilities12.2Filters maintenance12.3Sensor periodic calibration12.4Vacuum pump                                                                                                                             | <b>40</b><br>40<br>40<br>41<br>41                               |
| 13 | Service solutions by Pfeiffer Vacuum                                                                                                                                                                                                                       | 42                                                              |
| 14 | Accessories                                                                                                                                                                                                                                                | 44                                                              |
| 15 | <ul> <li>Technical data and dimensions</li> <li>15.1 Technical characteristics</li> <li>15.2 Compressed dry air (CDA) characteristics</li> <li>15.3 Venting gas characteristics</li> <li>15.4 Environmental conditions</li> <li>15.5 Dimensions</li> </ul> | <b>45</b><br>45<br>45<br>45<br>45<br>46<br>46                   |
| 16 | Appendix16.1Calculations16.1.1Density16.1.2Flow measurement16.1.3Mass flow to volumic flow16.1.4Mass extracted16.1.5Temperature calculation16.1.6Pressure calculation16.2Command parameters                                                                | <b>48</b><br>48<br>48<br>48<br>48<br>48<br>48<br>49<br>49<br>49 |
|    | EC Declaration of Conformity                                                                                                                                                                                                                               | 57                                                              |

## **1** About this manual



IMPORTANT

Read carefully before use. Keep the manual for future consultation.

## 1.1 Validity

These operating instructions are a customer document of Pfeiffer Vacuum. The operating instructions describe the functions of the named product and provide the most important information for the safe use of the device. The description is written in accordance with the valid directives. The information in these operating instructions refers to the product's current development status. The document shall remain valid provided that the customer does not make any changes to the product.

### 1.1.1 Applicable documents

| SpeedAir 3050                                | Operating Instructions    |
|----------------------------------------------|---------------------------|
| LeakTek software operating instructions      | LeakTek 6.13              |
| LeakRx software operating instructions       | 131872                    |
| HiScroll 6 operating instructions            | PU0097BEN                 |
| EC Declaration of conformity                 | Included with this manual |
| 1) also available at www.pfeiffer-vacuum.com |                           |

#### 1.1.2 Products concerned

This document applies to products with the following part numbers:

| Part Number | Description   |
|-------------|---------------|
| S3050xxxxx  | SpeedAir 3050 |

## 1.2 Target group

These operating instructions are aimed at all persons performing the following activities on the product:

• Transportation

•

- Setup (Installation)
- Usage and operation
- Decommissioning
- Maintenance and cleaning
- Storage or disposal

The work described in this document is only permitted to be performed by persons with the appropriate technical qualifications (expert personnel) or who have received the relevant training from Pfeiffer Vacuum.

## 1.3 Conventions

#### 1.3.1 Instructions in the text

Usage instructions in the document follow a general structure that is complete in itself. The required action is indicated by an individual step or multi-part action steps.

#### Individual action step

A horizontal, solid triangle indicates the only step in an action.

This is an individual action step.

#### Sequence of multi-part action steps

The numerical list indicates an action with multiple necessary steps.

- 1. Step 1
- 2. Step 2
- 3. ...

### 1.3.2 Pictographs

Pictographs used in the document indicate useful information.



#### 1.3.3 Labels



Indicates an electrical shock hazard in the event of contact.

P.N. SpeedAir 3050/2000220268 VOLTS 115/220 VAC Rating plate (example). S.N. US1124130003 POWER 360W P/N Designation - Pa

| DATE                | OCTOBER 2024                                   | POWER | 360W                     | P/N   |
|---------------------|------------------------------------------------|-------|--------------------------|-------|
| <b>.</b> (1).       | Pfeiffer Vacuum Inc.<br>Conforms to UL 61010-1 | FREQ. | 50/60 HZ                 | S/N   |
| Intertek<br>4004834 | CSA C22.2# 61010-1                             | FUSE  | 20A 250V<br>T Time Delay | DATE  |
|                     |                                                |       |                          | VOLTS |

Designation - Part number Serial number Date of manufacture Use voltage

#### POWER FREQ. FUSE

USE 2 ti

Maximum power consumption Use frequency 20 A - 250 VAC T time delay

#### 1.3.4 Abbreviations

| CCIT   | Container Closure Integrity Test                              |
|--------|---------------------------------------------------------------|
| UUT    | Unit Under Test                                               |
| CDA    | Compressed Dry Air                                            |
| SPC    | Statistical Process Control                                   |
| DAQ    | Data Acquisition System                                       |
| PID    | Proportional Integral Derivative (control loop with feedback) |
| HDMI   | High Definition Multimedia Interface                          |
| IMFS   | Intelligent Molecular Flow Sensor                             |
| USB    | Universal Serial Bus                                          |
| µg/cc  | micro-gram/cc                                                 |
| µg/min | micro-gram/min                                                |
|        |                                                               |

## 2 Safety

## 2.1 General safety information

The following 4 risk levels and 1 information level are taken into account in this document.

#### A DANGER

#### Immediately pending danger

Indicates an immediately pending danger that will result in death or serious injury if not observed.

Instructions to avoid the danger situation

#### **WARNING**

#### Potential pending danger

Indicates a pending danger that could result in death or serious injury if not observed.

Instructions to avoid the danger situation

#### 

#### Potential pending danger

Indicates a pending danger that could result in minor injuries if not observed.

Instructions to avoid the danger situation

#### NOTICE

#### Danger of damage to property

Is used to highlight actions that are not associated with personal injury.

Instructions to avoid damage to property



Notes, tips or examples indicate important information about the product or about this document.

#### 2.1.1 Safety instructions

All safety instructions in this document are based on the results of the risk assessment carried out in accordance with Machinery Directive 2006/42/EC Annex I and EN ISO 12100 Section 5. Where applicable, all life cycle phases of the product were taken into account.

#### **WARNING**

#### Risk of fatal injury due to electric shock on account of incorrect installation

The device's power supply uses life-threatening voltages. Unsafe or improper installation can lead to life-threatening situations from electric shocks obtained from working with or on the unit.

- Ensure safe integration into an emergency off safety circuit.
- Do not carry out your own conversions or modifications on the unit.

#### **WARNING**

#### Risk of electric shock due to non-compliant electrical installations

This product uses mains voltage for its electrical supply. Non-compliant electrical installations or installations not done to professional standards may endanger the user's life.

- Only qualified technicians trained in the relevant electrical safety and EMC regulations are authorized to work on the electrical installation.
- ► This product must not be modified or converted arbitrarily.

#### **WARNING**

Danger of electrocution by contact during maintenance or overhaul

There is an electric shock hazard in case of contact with a powered product and not electrically isolated.

- Before carrying out any work, set the main switch to O.
- Take care to ensure that the mains connection is always visible and accessible so that the equipment can be disconnected at any time.
- Disconnect the mains power cable from the mains.

### 2.1.2 Precautions



#### Duty to provide information on potential dangers

The product holder or user is obliged to make all operating personnel aware of dangers posed by this product.

Every person who is involved in the installation, operation or maintenance of the product must read, understand and adhere to the safety-related parts of this document.



#### Obligation to provide personal protective equipment

The operators or employers are obliged to provide the user of the product with the necessary personal protective equipment (PPE).

Persons responsible for installing, operating and repairing the product must wear PPE for safety.



#### Infringement of conformity due to modifications to the product

The Declaration of Conformity from the manufacturer is no longer valid if the operator changes the original product or installs additional equipment.

 Following the installation into a system, the operator is required to check and re-evaluate the conformity of the overall system in the context of the relevant European Directives, before commissioning that system.

Installation and maintenance procedures described in this manual must be performed by qualified technicians trained in the relevant health and safety aspects (EMC, electrical safety, chemical pollution). Our service centers can provide the necessary training.

- Do not expose any part of the human body to the vacuum.
- Comply with all safety and risk prevention instructions in accordance with local safety standards.
- Regularly check compliance with all precautionary measures.
- Do not remove the blanking plates sealing the inlet and exhaust ports if the product is not connected to the pumping line.

### 2.2 Intended use

SpeedAir 3050 leak testing equipment is designed for Pharmaceutical Container Closure Integrity Test (CCIT).

### 2.3 Foreseeable misuse

Misuse of the product will render the warranty and any claims void.

Any use, whether intended or not, that diverges from the uses already mentioned will be treated as noncompliant.

## 3 Transportation and Storage

## 3.1 Receipt of the product

# i

#### Condition of the delivery

- Check that the product has not been damaged during transport.
- If the product is damaged, take the necessary measures with the carrier **and** notify the manufacturer.
- Keep the product in its original packaging so it stays as clean as it was when dispatched by us. Only unpack the product once it has arrived at the location where it will be used.
- Keep the blanking plates in place on the inlet, exhaust and purge ports while the product is not connected to utilities.



Keep the packaging (recyclable materials) in case the product needs to be transported or stored.

## 3.2 Unpacking

- 1. Unpack the equipment.
- 2. Make sure the equipment is in good condition with the proper caps.

## 3.3 Handling

#### 

#### Risk of crushing related to product tilting

Although the product fully complies with the EEC safety regulations, there is a risk of tilting when it is moved over the floor or is not properly secured.

- Do not place the product on an inclined plane.
- Place it on a flat, hard floor.
- Do not push the product sideways.

#### **A** CAUTION

#### Risk of injury due to heavy loads

System is constructed on self-contained trolley to facilitate moving to installation location.

- The weight of the equipment may injure the user if it is handled incorrectly and is therefore hazardous to health.
- The manufacturer cannot be held liable for the consequences of using other handling equipment.

## 3.4 Storage



Pfeiffer Vacuum recommends storing the products in their original transport packaging.

Store the product in a clean, dry environment for a maximum of 3 months, in accordance with the specified temperature conditions (see chapter "Environmental conditions").

Beyond 3 months, factors such as temperature, humidity, salt in the air, etc. could damage some components (elastomers, lubricants, etc.). If this happens, contact our service center.

## 4 Product description

## 4.1 Product identification

To correctly identify the product when communicating with our service center, always have the information from the product rating plate available (see chapter "Labels").

## 4.2 Scope of delivery

- One SpeedAir 3050 equipment
- USB drive for software
- 1 set of operating instructions (equipment and software (LeakTek and Leak Rx) on USB drive)
- 1 mains supply cable for 120 VAC voltage
- 1 mains supply cable for 220 VAC voltage
- 1 verification orifice leak (model depending on equipment, delivered with its certificate)
- Additional verification orifices and/or tooling depending on the selected options.

## 4.3 Variants

SpeedAir 3050 is comprised with the following options.

| Option                        |                                                                                                  | Description                                                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Sensor size                   | 2 μg/min, Full Scale<br>10 μg/min, Full Scale<br>50 μg/min, Full Scale<br>100 μg/min, Full Scale | Sensor selection is function of product outgassing and required size of defect detection.                  |
| External pres-<br>sure sensor | 0–10 Torr<br>0–50 Torr<br>0–100 Torr                                                             | External pressure sensor used in initial pull down stage to detect and abort test in gross leak condition. |

## 4.4 Overview

The SpeedAir 3050 with internal sensor, integrated manifold and accessories provides a complete solution for Container Closure Integrity Testing (CCIT). Operating at hard vacuum (0.5 - 20 Torr in the transitional and/or molecular flow regime), the sensor electrical signal is proportional to Mass Flow. Once the UUT or chamber is evacuated and reaches steady state condition (stable vacuum and temperature), the amount of mass flow extracted from the UUT equals the mass flow of any leak. In other words, the sensor measures the make-up flow required to keep the vacuum steady in the UUT under evacuated condition. For short cycle times, a flow signature compared to a referenced "master" part it utilized.

The controller performs on board mass (e.g.,  $\mu$ g/min) flow measurements. The measured mass flow rate can be displayed as calculated volume flow at actual or standard temperature and pressure conditions.

LeakTek or 21 CFR Part 11 compliant LeakRx software is used with the instrument. The software allows the user to configure desired parameters to meet specific requirements. It can be used to download to the instrument as well as view, save, and analyze test data. The instrument can be configured to run up to 4 Test Types (see chapter "Setup") without downloading new parameters or any number of saved test setups (recipes) can be downloaded as the active test.

An advantage of mass extraction measurement is that the measured leak rate is independent of the UUT volume, and the measurement is a direct leak flow measurement. "Calibration" to account for test volume is not required. The supplied verification orifice or "calibrated leak" is used to verify equipment operation with a blank or master part.

## 4.5 SpeedAir 3050 softwares

SpeedAir 3050 is delivered with 2 softwares.

- LeakTek software
- LeakRx software

In these Operating Instructions, "software" is used for both "LeakTek" and "LeakRx" software.

- If a software information/instruction is common for both softwares, the software name is not indicated ("software" only)
- If a software information/instruction is specific for one software, the software name is indicated ("LeakTek" or "LeakRx").

The LeakRx is a FDA 21 CFR Part 11 compliant version of the LeakTek software.

The software is a Windows based data acquisition software package designed for use with Pfeiffer Vacuum's mass extraction sensor. It allows:

- to download test parameters of a given CCIT
- to upload parameters stored in a sensor
- to calibrate a specified sensor
- to acquire and store data
- to analyze and report feature.



## 4.7 Remote I/O

A male 37-pin D-connector is located on the rear panel of the equipment.

#### Standard remote I/O connections



| Pin    | Function                    | Specifications                                      |
|--------|-----------------------------|-----------------------------------------------------|
| Pin 1  | Analog output A             | 0–5 VDC                                             |
| Pin 2  | Analog output B             | 0–5 VDC                                             |
| Pin 3  | Not used                    | -                                                   |
| Pin 4  | Remote exhaust valve return | 0 VDC                                               |
| Pin 5  | Ground/Common               | 0 VDC                                               |
| Pin 6  | Verify input                | 5–30 VDC, source or sink <sup>1)</sup> - 30 mA max  |
| Pin 7  | Remote output common        | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 8  | Clamp output                | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 9  | Pressure/Test output        | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 10 | Exhaust output              | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 11 | Evacuation/Shunt output     | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 12 | Pre-Evacuation output       | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 13 | Isolate output              | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 14 | Not used                    | 0 VDC                                               |
| Pin 15 | Not used                    | -                                                   |
| Pin 16 | Not used                    | -                                                   |
| Pin 17 | Not used                    | -                                                   |
| Pin 18 | Not used                    | -                                                   |
| Pin 19 | Not used                    | -                                                   |
| Pin 20 | Analog ground               | 0 VDC                                               |
| Pin 21 | Custom equipment output     | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 22 | Pass output                 | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 23 | Fail output                 | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 24 | PFail output                | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |
| Pin 25 | TTA output                  | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max |

| Pin    | Function                                            | Specifications                                                                      |
|--------|-----------------------------------------------------|-------------------------------------------------------------------------------------|
| Pin 26 | TTB output                                          | 5–30 VDC, source or sink <sup>1)</sup> - 100 mA max                                 |
|        |                                                     | Test Type1: TTA:1 - TTB: 0                                                          |
|        |                                                     | Test Type2: TTA:0 - TTB: 1                                                          |
|        |                                                     | Test Type3: TTA:1 - TTB: 1                                                          |
|        |                                                     | Test Type4: TTA:0 - TTB: 0                                                          |
| Pin 27 | Start input                                         | 5–30 VDC, source or sink <sup>1)</sup> - 30 mA max                                  |
|        |                                                     | Apply a pulse to the sensor 'Start input' pin to start a test.                      |
| Pin 28 | Stop input                                          | 5–30 VDC, source or sink <sup>1)</sup> - 30 mA max                                  |
|        |                                                     | Apply a pulse to the sensor 'Stop input' pin to stop a test.                        |
| Pin 29 | Test type input                                     | 5–30 VDC, source or sink <sup>1)</sup> - 30 mA max                                  |
|        |                                                     | Apply a pulse to the sensor 'Test Type input' pin to switch to the other test type. |
| Pin 30 | Pressure switch input                               | 5–30 VDC, source or sink <sup>1)</sup> - 30 mA max                                  |
| Pin 31 | Remote input common                                 | 5–30 VDC, source or sink <sup>1)</sup>                                              |
| Pin 32 | Not used                                            | -                                                                                   |
| Pin 33 | Not used                                            | -                                                                                   |
| Pin 34 | Not used                                            | -                                                                                   |
| Pin 35 | Not used                                            | -                                                                                   |
| Pin 36 | Not used                                            | -                                                                                   |
| Pin 37 | +5 VDC power (do not use to power external devices) | +5 VDC                                                                              |

1) Either Sinking or Sourcing may be selected for all inputs or outputs i.e., all sinking inputs, all sourcing outputs, etc. Use pins 7 and 31 to select type and voltage of inputs and outputs.

| List of p | bass and | failure | mode | with | pin | outs |
|-----------|----------|---------|------|------|-----|------|
|-----------|----------|---------|------|------|-----|------|

| Mode                        | Description                                                                                                                     | Pin out            |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Pass                        | The test met all criteria set in the set-up screen.                                                                             | Pin 22             |
| Gross leak fail             | The vacuum is below the vacuum minimum setting in pressure testing or pressure switch not turned on in during Evacuation delay. | Pin 23             |
| Gross leak vacuum<br>fail   | The vacuum is larger than the vacuum maximum setting in vac-<br>uum testing.                                                    | Pin 23             |
| Blockage fail               | Pressure switch not turned off at the end of the test during de-<br>plete time.                                                 | Pin 23 -<br>Pin 24 |
|                             | External pressure is within the limits for external pressure off ac-<br>tion.                                                   |                    |
| Fine leak fail              | Flow is above the maximum flow limit setting.                                                                                   | Pin 23             |
| Low flow fail               | Flow is below the minimum flow limit setting.                                                                                   | Pin 23             |
| Back flow                   | The flow sensor detected the flow in opposite direction or system leak check failure.                                           | Pin 23             |
| Over pressure               | The vacuum is larger than the vacuum maximum setting in pres-<br>sure testing.                                                  | Pin 23             |
| Under pressure              | The vacuum is below the vacuum minimum setting in vacuum testing.                                                               | Pin 23             |
| Flow saturation             | Exceeding flow sensor limit.                                                                                                    | Pin 23             |
| Pressure saturation         | Exceeding pressure sensor limit.                                                                                                | Pin 23             |
| Temperature satu-<br>ration | Exceeding temperature sensor limit.                                                                                             | Pin 23             |
| PresRng-HI                  | External pressure higher than set limit.                                                                                        | Pin 23 -<br>Pin 24 |
| PresRng-Lo                  | External pressure lower than set limit.                                                                                         | Pin 23 -<br>Pin 24 |

## 5 Installation

## 5.1 Locating

### **WARNING**

#### Risk of injury due to heavy loads

The weight of the equipment may injure the user if it is handled incorrectly and is therefore hazardous to health.

The equipment must be immobilized when it is being used or maintained.

- Engage the brakes to immobilize it.
- Use the equipment handle to move it.
- ▶ The manufacturer cannot be held liable for the consequences of using other handling equipment.



Mount and locate the equipment as close as possible to the UUT (test chamber) to minimize equipment/UUT connection tube length and volume.

Larger volumes reduce the equipment response time to a given leak flow.

The equipment must be used in horizontal position, standing on its 4 wheels, with the brakes on.

- The equipment must be stored for at least 8 hours under normal use conditions (see chapter "Environmental conditions") before switching on.
- The equipment must be correctly lighted to allow a clear view of its indicator lights and its monitor, with no shadows or reflections.
- The equipment should be installed in an area with controlled humidity levels.

#### Ventilation

To guarantee the characteristics and performances of the equipment within the boundaries of the operating conditions:

- Do not obstruct the ventilation grids.
- Ensure the rear of the equipment with the air circulation grids is at least 110 mm away from fixed walls.

The equipment is not rated to operate in class 1 or 2 environments.



1 Air inlet/extraction

## 5.2 Compressed dry air (CDA) connection

The compressed air allows to operate the valves.

The compressed dry air supply is to be supplied by the end user.

• Connection (see chapter "Human/Machine Interface")

A compressed dry air supply with the given characteristics is required (see chapter "Compressed dry air characteristics").

The user is ultimately responsible for the installation and must apply applicable safety precautions in accordance with local regulations.

- When installing the compressed dry air circuit, provide accessories to isolate the equipment in the installation and facilitate its maintenance (isolation valve, etc.).
- Fit flexible hoses in the circuit to reduce the transmission of vibrations, and hoses of the same diameter as the connector.
- When multiple regulators are utilized to step the pressure down, be sure volume (≥ 10 L) exists between the two to avoid "cross-talk" variation from the pressure supply.
- Air consumption spikes near the equipment can cause variation in reading. If required, a separate drop from compressor may be required.

#### System pressurization



First pushed gate tab inward, then push gate upwards to pressurize the system.

- Air supply (from customer) inlet fitting
   Pneumatic inlet combo (filter, regulator and disconnect)
- 3 Pressure On/Off gate valve

### 5.3 Vacuum source and connection

The equipment includes a Pfeiffer Vacuum HiScroll 6 vacuum pump and regulation.

Connections from the regulated supply to the instrument are on the rear of the equipment.

- 1. If vacuum connections have become loose from vibration in transport, support the bulkhead fitting when tightening the tube fitting.
- To adjust vacuum level, adjust needle valve for vacuum adjustment (see chapter "Human/ machine interface").

## 5.4 Venting gas circuit connection

Nitrogen and CDA are the only permitted venting gases. The venting gas supply is to be supplied by the end-user.

#### **WARNING**

#### Risk of asphyxia in the event of a burst hose

The equipment uses a specific gas  $(N_2)$  which may cause a lack of oxygen in the atmosphere or inside the equipment in the event of a leaking hose in a confined space.

- Install the equipment in an environment with sufficient ventilation to absorb any N<sub>2</sub> which may escape in the event of a leaking hose.
- Install (recommendation) a flow limiter to prevent a risk of asphyxia in the event of a burst hose. The maximum authorized flow is 25 slm.
- Connection (see chapter "Man/Machine Interface")

A venting gas supply with the given characteristics is required for optimum performance (see chapters "Venting gas characteristics" and "Compressed dry air characteristics").

The user and/or equipment integrator are ultimately responsible for the installation and must apply the specific safety guidelines, in accordance with local regulations.

Fit flexible hoses in the circuit to reduce the transmission of vibrations, and hoses of the same diameter as the connector.

#### 5.5 Mains connection

#### **WARNING**

#### Risk of electric shock due to non-compliant electrical installations

This product uses mains voltage for its electrical supply. Non-compliant electrical installations or installations not done to professional standards may endanger the user's life.

- Only qualified technicians trained in the relevant electrical safety and EMC regulations are authorized to work on the electrical installation.
- This product must not be modified or converted arbitrarily.

#### A WARNING

#### Danger of electrocution by contact during maintenance or overhaul

There is an electric shock hazard in case of contact with a powered product and not electrically isolated.

- Before carrying out any work, set the main switch to O.
- Take care to ensure that the mains connection is always visible and accessible so that the equipment can be disconnected at any time.
- Disconnect the mains power cable from the mains.

#### **A** CAUTION

#### Risk of inaccurate results, product malfunction and/or damaged electronics

Using of ncorrect incoming supply may result in inaccurate results, product malfunction and/or damaged electronics.

Examples: pressure spike or moisture in CDA or venting supply can yield inaccurate results (i.e. rejecting marginally OK part; acceptance of marginally NOK part).

Use correct supply (see chapter "Technical characteristics").

### NOTICE

Risk of loss of performance due to electromagnetic disturbance

The products' EMC behavior is guaranteed only if the relevant EMC standards are followed during installation.

Use shielded cables and connections for the interfaces in interference-prone environments.

#### NOTICE

#### **Risk of electrical overload**

The equipment is protected against overload via electromechanical-component circuit breakers.

- ▶ Never override these interlocks during installation, use, or maintenance.
- Connect the equipment to the mains using the provided cable.
- Connect the mains power cable to the mains (see chapter "Human/Machine interface").

## 5.6 Inputs - Outputs - Communications

**Analog inputs** 

0-5 VDC

#### **Digital inputs**

All digital inputs are optically isolated.

5-30 VDC sinking or sourcing

Inputs via push button, dry contact, solid-state relays or PLC output.

#### **Digital outputs**

Digital outputs do not have enough power to drive an inductive load.

► Use small external relays or optically isolated modules (preferred) to drive valves or large relays.

#### Ethernet port

The equipment ethernet port does not support Power Over Ethernet (POE).

## 5.7 UUT fixture

It is the user's responsibility to properly design any test fixture including:

- all safety requirements,
- elimination of seal "drift" or movement that cause volume changes and bias of readings
- minimization of fixture test volume
- minimization of virtual leaks.

A UUT port (VCO 8) is on the top of the equipment for connecting applicable fixtures. The VCO fitting should be tightened very lightly on the bulkhead by supporting the bulkhead fitting with an 11/16 or 1" wrench when tightening the tube. Do not over tighten.

## 6 Commissioning

## 6.1 Acclimate

The equipment should acclimate to ambient conditions for at least 8 hours under normal use conditions before switching on (see chapter "Environmental conditions").

### 6.2 Communications

When software opens, it attempts to establish communication with sensors attached to the communications port defined in the configuration file.

| Dev    | ice List          |                 |                | US1124200002 |
|--------|-------------------|-----------------|----------------|--------------|
| No.    | MAC ID            | IP Address      | Name           | Status       |
| 1      | 00:40:9D:B1:D6:FE | 169.254.116.239 | US1124200002   |              |
|        |                   |                 |                |              |
|        |                   |                 | Stop Searching | 1            |
| Scanni | ng, Please Wait   |                 | Stop Searching | ,            |
| Scanni | ng, Please Wait   | Switch          | Stop Searching | ,            |

Software displays text in the lower part of the screen as it attempts to find sensors. Sensors that are detected by software for the first time are assigned a Sensor Name.

## 6.3 Initial operation

For further detail, see chapter "Main".

1. Power the equipment.

Initially, Pfeiffer Vacuum recommends LeakTek software be utilized (switch to LeakRx when desired after initial operation is confirmed to be operational). When LeakTek software is launched, the "Main" screen displays.

| P Leak-Tek |          |                  |                                                 |                |              | - 0 ×      |
|------------|----------|------------------|-------------------------------------------------|----------------|--------------|------------|
| Help       |          | Le               | ak Test System                                  |                |              |            |
|            |          |                  |                                                 |                |              |            |
|            |          |                  |                                                 | _              |              |            |
|            |          | PFEIFF           | ER                                              | сиим           |              |            |
|            |          | L                | .eak-Tel                                        | K              |              |            |
|            |          | L                | eak Test System                                 |                |              |            |
|            |          | Соруг            | Version 6.12<br>ight (c) 1998-2020 Pfeiffer-Vac | uum.           |              |            |
|            |          |                  |                                                 |                |              |            |
|            |          |                  |                                                 |                |              |            |
|            |          |                  |                                                 |                |              |            |
| Setup (F2) | Run (F4) | Maintenance (F6) | Reports (F8)                                    | Analysis (F10) | System (F12) | Exit (ESC) |

2. Go to the [Run (F4)] tab. External pressure should be > 90 Torr.

| etup ID:     | Default001-T4      | •          |               |              | 1             | Stability 1    | 0.      |
|--------------|--------------------|------------|---------------|--------------|---------------|----------------|---------|
| 1            | US1124200002       | Sensor M37 |               | CCIT Tria    | 1-000         | 000 CSV        |         |
|              | 0820M37050U010T(1) |            | 6.100         | 001111       |               |                | 60.0    |
| 2            | Flow (ug/min):     | 0.091      | 5.00          |              |               |                | 50.0    |
| 3            | Pressure (Torr):   | 1.868      | Ê 4.00        |              |               |                | 40.0    |
| 4            | External pressure  | 98.31      | E             |              |               |                | 30.0    |
|              |                    |            | 2 3.00        |              |               |                | 20.0    |
| 5            | Status             | Idle       | Ë 2.00        |              |               |                | 10.0    |
| 6            |                    |            | 1.00          |              |               |                | 0.00    |
| 7            |                    |            | 1             |              |               |                | 10.0    |
| 7            |                    |            | 0.000         |              |               |                |         |
| ľ            |                    |            | 0.00          |              |               |                | -10.0   |
| ·            |                    |            | 0.000 5       | 10 15        | 20            | 25 3           | 0 35    |
|              |                    |            | 0 5           | 10 15<br>Tir | 20<br>ne (sec | 25 3<br>:)     | 0 35    |
|              |                    |            | 0.000 5       | 10 15<br>Tir | 20<br>ne (sec | 25 3<br>:)     | 0 35    |
| -            |                    |            | 0.000 5       | 10 15<br>Tir | 20<br>ne (sec | 25 3<br>:)     | 0 35    |
| _            |                    |            | 0.000 5       | 10 15<br>Tit | 20<br>ne (sec | 25 3           | 0 35    |
| 7            |                    |            | 0.100 5       | 10 15        | 20            | 25 3           | 0 35    |
| 7            |                    |            | 0.000         | 10 15        | 20            | 26 2           | -10.0   |
| 7            |                    |            | 0.00          |              |               |                | -10.0   |
| <u> </u>     |                    |            | ] 1.00        |              |               |                | 0.00    |
| 3            |                    |            | 1.00          |              |               |                | 0.00    |
|              |                    |            | <u> </u>      |              |               |                | 10.0    |
| _            | Status             | luio       | 4             |              |               |                | 10.0    |
|              | Status             | Idle       | 2 2.00        |              |               |                | 10.0    |
| 5            | Status             | Idle       | Ë 2.00        |              |               |                | 10.0    |
| 5            |                    |            | 9 2 MO        |              |               |                | 20.0    |
|              |                    | _          | 100           |              |               |                | 20.0    |
| 4            | External pressure  | 98.31      | § 3.00        |              |               |                | 20.0    |
| 4            | External pressure  | 98.31      | 2 3.00        |              |               |                | 30.0    |
|              | External pressure  | 99.21      | E             |              |               |                | 30.0    |
|              | Pressure (Ton).    | 1.000      | 5 4.00        |              |               |                |         |
| 3            | Pressure (Torr):   | 1.868      | E 4 100       |              |               |                | 40.0    |
|              | riow (ugrinity.    | 0.001      | 5.100         |              |               |                | 50.0    |
| 2            | Flow (ug/min):     | 0.091      |               |              |               |                | 50.0    |
| 1            | 0820M37050U010T(1) | Sensor M37 | 6.100         | CCIT Tria    | 1-000         | 000.CSV        | 60.0    |
|              | LIS1124200002      |            |               |              |               |                |         |
| etup ID:     | Default001-T4      | •          |               |              | 1             | outoing 1      |         |
| ourth Test - | -                  |            | Test ype      | 1            | 7             | Stability 1    | 0       |
| etup ID.     | Derauluo1-13       | •          | Depite at End | Air .        | 0             | Evacuation I   |         |
| hird Test -  |                    |            | Pressure Max  | 5.0000       | 4             | Pre-Evacuation | 5.      |
| cop to.      | L'eladito 1-12     | -          | Presure Min   | 0.2000       | 3             | Pressure Check | 0.      |
| econd Test   | Default001-T2      |            | Pressure Set  | 1.0000       | 2             | Pre-Evacuation | 10      |
|              |                    | -          | Max Row       | 50.000       | 1             | Clamp / ISO    | 0       |
|              | Default001         | *          |               | -0.0000      | 140           | Step Name      | 1(secs) |

- 3. Confirm UUT port is capped/plugged (provided cap/plug).
- 4. Hit start (**Start** button on LeakTek software ("Run" mode) or button on the instrument) several times without venting after test to put system under vacuum.
- 5. Progressively, the system should run more steps and complete a full test cycle (< 10 cycles).
- 6. Inspect for leaks.
- 7. External pressure should drop < 10 Torr.
- 8. When achieved, leave system powered on in vacuum condition for minimum 4 hours (recommended overnight).
- 9. Test with the equipment capped.
- 10. The reading should be close to "Zero". If high or low flow is observed, check all upstream and downstream connections for leaks.
- 11. Confirm an internal verification orifice is installed.
- 12. Open the verification orifice.
- 13. Run several tests with the provided cap/plug and the verification orifice open. Flow values should exceed tests without verification orifice.
- 14. Further part setup (recipe) to follow.

## 6.4 LeakRx Access rights

LeakRx Run, Setup, Maintenance, and System screens are password protected. Default levels of access rights.

| Level         | Description                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------|
| Operator      | The Operator level can access the Run screen.                                                                                |
| Engineer      | The Engineer level can access the Run, Setup, Maintenance, and System screens.                                               |
| Administrator | The Administrator level can create user logins and set access levels while being able to access all screens in the software. |
|               | The Administrator level can create user logins and set access levels while being able to access all screens in LeakRx.       |

## 6.5 LeakRx First launching

When LeakRx is launched and allowed to initialize, two dialog windows display.

| Restrict Administrator account? | Restrict Engineer account? |
|---------------------------------|----------------------------|
| LeakRx                          | LeakRx X                   |
| Restrict Administrator account? | Restrict Engineer account? |
| Yes <u>N</u> o                  | Yes No                     |

Administrator clik on [Yes] or [No] button.

These dialog boxes are not displayed in future launch of software.

- If Administrator account is restricted (**[Yes]**), any Administrator account cannot access the Run, Setup, or Maintenance screens.
  - If Administrator account is not restricted (**[No]**), the Administrator account has all the authorization of an Operator and Engineer account.
- If Engineer account is restricted ([Yes]), the Engineer account cannot access the Run screen.
   If Engineer account is not restricted ([No]), the Engineer account has the authorization of Operator account.

Once the access level is confirmed, the System screen is displayed.

### 6.6 LeakRx Change password

[Change PW] button is used to change the password for the user with the user name in User ID.

Preliminary condition: password not locked. If password locked, **[Change PW]** button is not accessible and user cannot change password. Administrator must reset.

- 1. Launch software.
  - User ID & Password dialog window appears.
- 2. Enter User ID in the dialog box.
- 3. Enter User ID current password in the dialog box.
- 4. Clik on [Change PW] button. New Password dialog window appears.
- 5. Enter new password a first time in the dialog box.
- 6. Clik on [Change] button.
- 7. Enter new password a second time in the dialog box.
- 8. Clik on [Verify] button.

## 7 Display screens

See Software operating instructions for further detail.



i

If the PC is inactive (no keyboard or mouse event) for an Administrator defined time, the software logs out back to the Main screen.

The 'Logoff Wait Time' is set from the Logoff Wait Time dialog box on System screen (see chapter "System screen" of the Software operating instructions).



The software resides on a PC (usually embedded) and is independent from the sensor micro-processor. This allows for modification, transfer of base settings, review and save in PC as separate SetupID (recipe). To align or sync the PC and sensor, use:

- Download to sensor (from PC to instrument micro-processor)
- Upload from Sensor (from instrument micro-processor to PC).

## 7.1 Main

Initial default screen upon launch

| LeakRx     |               |                  |                                  |                             |              | -       | 0   | × |
|------------|---------------|------------------|----------------------------------|-----------------------------|--------------|---------|-----|---|
|            |               | Le               | ak Test System                   |                             |              |         |     |   |
|            |               |                  |                                  |                             |              |         |     |   |
|            |               | PFEIFF           | ER) VA                           | сиим                        |              |         |     |   |
|            |               | Le               | <b>ak-</b> ]                     | R <sub>s</sub>              |              |         |     |   |
|            |               | L 1              | eak Test System                  |                             |              |         |     |   |
|            |               |                  | Marrian 107.2                    |                             |              |         |     |   |
|            |               | Copyrig          | aht (c) 2010-2021 Pleifler-Vacuu | im, Inc                     |              |         |     |   |
|            |               |                  |                                  |                             |              |         |     |   |
|            |               |                  |                                  |                             |              |         |     |   |
|            |               |                  |                                  |                             |              |         |     |   |
|            |               |                  |                                  |                             |              |         |     | _ |
| Setup (F2) | (F4) Run (F4) | Maintenance (F6) | Reports (F8)                     | Analysis(F10)<br>Calculator | System (F12) | Exit (E | SC) |   |

## 7.2 Setup

Allows to create and modify test parameters for specific SetupID's (recipes). This screen is password protected: see chapter "LeakRx Access rights".

| Leakrox                         |                |              |                              |                       |         |              |                                                           | σ,                   |
|---------------------------------|----------------|--------------|------------------------------|-----------------------|---------|--------------|-----------------------------------------------------------|----------------------|
|                                 |                |              |                              | Setup                 |         |              |                                                           | 9/11/2024 9:35:36 AM |
| Part Info<br>Setup ID (Recipe): |                |              | - Test Information -<br>Flow |                       |         | Tir          | ne:                                                       |                      |
| Default001                      |                |              | Min Flow                     | -0.5000               | _       | No           | Step Name                                                 | Time in secs         |
| Part ID :                       |                | _            | Max Flow                     | 50.000                |         | 1            |                                                           | 0.400                |
|                                 |                |              | Large Flow Chk :             | 40,000                |         | 2            | Pre-Evacuation                                            | 10.000               |
|                                 |                |              | Pressure                     |                       |         | 3            | Pressure Check                                            | 0.400                |
| Sensor Name :                   |                |              | Pressure Set:                | 1.0100                |         | 4            | Pre-Evacuation                                            | 5.000                |
| Sensor M37                      |                | -            | Pressure Max:                | 5.0100                |         | 5            | Evacuation 1                                              | 1.000                |
| Measurement Unit                |                |              | Pressure Min:                | 0.2100                |         | 6            | Pre-Stabilit                                              | 1.000                |
|                                 | Damas          |              | - ExtProceura -              |                       |         | 7            | Stability 1                                               | 0.500                |
| emperature :                    | Degree C       | · <u> </u>   | Pressure Min:                | 0.2100                |         | 8            | Large Leak Chec                                           | 0.500                |
| ressure :                       | Torr           | -            | Pressure Max:                | 20.000                |         | 9            | Evacuation 2                                              | 5.000                |
|                                 |                |              | Gas                          |                       |         | 10           | Pre-Stability 2                                           | 3.000                |
| low :                           | ug/min         | -            | Gas Type :                   | Air                   | •       | 11           | Stability 2                                               | 10.000               |
|                                 |                |              |                              |                       |         | 12           | Leak Check                                                | 1.000                |
|                                 |                |              |                              |                       |         | 13           | End                                                       | 0.010                |
|                                 |                |              | C Deplete pressure after     | the fest<br>surrement |         | Larg<br>Leal | e Flow Check at Large Leak<br>Check at Leak Check<br>ment | Chec                 |
| Down                            | load to Sensor | r(F4)        | Audi                         | Trail (F7)            |         |              | 📑 Upload t                                                | from Sensor(F6)      |
| Add Setup                       | (F10)          | Delete Setup | Save (F2)                    | Prir                  | t (F12) | ſ            | Create SPC File                                           | (F8) Done (ESC)      |

#### Description

| Part Info | Setup ID    | Setup (recipe) name from drop down |
|-----------|-------------|------------------------------------|
|           | Part ID     | User text (comment, batch)         |
|           | Sensor Name | Software assigned                  |

| Description                       |                                                                                     |                                                                                   |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Measurement units                 | Temperature                                                                         | Temperature - User select desired units (drop down)                               |  |  |  |
|                                   | Pressure                                                                            | Pressure - User select desired units (drop down)                                  |  |  |  |
|                                   | Flow                                                                                | Flow - User select desired units (drop down)                                      |  |  |  |
| Test Information                  | Flow/Leak                                                                           | Flow – Min, Max, Large Leak Chk                                                   |  |  |  |
|                                   | Pressure                                                                            | Pressure – Set, Max, Min                                                          |  |  |  |
|                                   | ExtPressure                                                                         | ExtPressure (chamber) – Min, Max                                                  |  |  |  |
|                                   | Gas                                                                                 | Air (from drop down)                                                              |  |  |  |
| Time                              | Times for each step                                                                 |                                                                                   |  |  |  |
| Deplete pressure after the test   | Check the "Deplete Pressure depleted at the end of a test."                         | after the test" box (✔) causes pressure to be<br>The default is to hold pressure. |  |  |  |
| Auto Zero/Relative<br>Measurement | o/Relative Auto zero/relative measurement feature is elected via check mark in ment |                                                                                   |  |  |  |

### 7.2.1 SetupID selection

From SetupID drop list, the user can select an available SetupID for each test or Add Setup (new Setup ID (recipe)).

After selection or creation of new SetupID, the selected SetupID can be downloaded to the sensor.

#### 7.2.2 Relative measurement

From Standard Test Sequence (see chapter "Standard test sequence").

At Step 10 in standard test sequence:

- Reservoir is the vacuum supply source.
- The UUT and internal reservoir are balanced.
- At end of step, the internal reservoir and UUT are at same pressure and thus flow is zero.
   If relative measurement is enabled, the flow is zeroed for the current test in process. The test result is relative to the zeroed flow condition. The End of Test result with reflect "RM" designation.

When Relative Measurement is enabled, the Run screen displays Relative Measurement status (see chapter "Test type").

When the "Test step" is greater than the "Zero Flow" step, relative flow measurement is displayed.

During the flow base line step, if the flow is greater than high flow relative limit, then the screen displays a high flow relative measurement error and stop the test.

During the flow base line step, if the flow is lower than the low flow relative limit, then a low flow measurement error is displayed and the test stops.

If the test result is "Pass", "Relative Measurement Pass" shows on the Run screen.

### 7.2.3 Test type

Test Type are part holders that can be accessed (if enabled) on Run screen.

There are up to 4 active Test Type holders (default, -TT2, -TT3 and -TT4).

Users can select whether to utilize more than one Test Types.

The number of Test Types must be specified in Firmware Configuration

#### Utilizing Test Type 1 only

All SetupIDs on Test Type 1

"Engineer" role (not "Operator") can select SetupID from PC and download to sensor.

Operator can then run tests on the default Test Type 1.

PC can have infinite number of SetupIDs (as storage permits).

#### Utilizing up to four Test Types

Test type allows an user to toggle up to 4 active SetupIDs in holders. A SetupID must be available in the test type holder to select. A particular SetupID (recipe) must be setup in a Test Type holder to be selected (example: "Vial1934" in default Test Type 1 must be duplicated to run in any other Test Type holder).

If duplicated in separate Test Type holder, a suffix is added by the software to indicate the alternative holder (i.e. "Vial1934-T2").

| Test result indicates the | e Test Type (e: | kample: Vial1934 | , Vial1934-T2, | Vial1934-T3, | Vial1934-T2). |
|---------------------------|-----------------|------------------|----------------|--------------|---------------|
|---------------------------|-----------------|------------------|----------------|--------------|---------------|

| LeakRx                          |                     |             |                                                   |                         |      |                     |                                                               | - 0                  |
|---------------------------------|---------------------|-------------|---------------------------------------------------|-------------------------|------|---------------------|---------------------------------------------------------------|----------------------|
|                                 |                     |             |                                                   | Setup                   |      |                     |                                                               | 9/11/2024 9:35:36 AM |
| Part Info<br>Setup ID (Recipe): |                     |             | Test Information<br>Flow                          | Lo 5000                 |      | Tin                 | ne:                                                           |                      |
| Default001                      |                     | •           | Min Flow                                          | -0.000                  | _    | No                  | Step Name                                                     | Time in secs         |
| Part ID :                       |                     |             | Max Flow                                          | 190,000                 | _    | 1                   | Clamp / ISO                                                   | 0.400                |
|                                 |                     |             | Large Flow Chk :                                  | 40.000                  |      | 2                   | Pre-Evacuation                                                | 10.000               |
| Sensor Name :                   |                     |             | Pressure                                          |                         |      | 3                   | Pressure Check                                                | 5.000                |
| Sensor M37                      |                     | -           | Pressure Set :                                    | 1.0100                  | _    | 5                   | Evacuation 1                                                  | 1,000                |
|                                 |                     | _           | Pressure Max                                      | 5.0900                  | _    | 6                   | Pre-Stabilit                                                  | 1.000                |
| Measurement Uni                 | ts                  |             | Pressure Min:                                     | 0.2000                  |      | 7                   | Stability 1                                                   | 0.500                |
| Temperature :                   | Degree C            | -           | Pressure Min                                      | 0.2100                  |      | 8                   | Large Leak Chec                                               | 0.500                |
| Pressure :                      | Torr                | -           | Pressure Max                                      | 20.000                  | _    | 9                   | Evacuation 2                                                  | 5.000                |
|                                 | 1.000               |             | Gar                                               |                         |      | 10                  | Pre-Stability 2                                               | 3.000                |
| Flow :                          | ug/min              | -           | Gas Type :                                        | Air                     | •    | 11                  | Stability 2                                                   | 10.000               |
|                                 |                     |             |                                                   |                         | _    | 12                  | Leak Check                                                    | 1.000                |
|                                 |                     |             |                                                   |                         |      | 13                  | End                                                           | 0.010                |
|                                 |                     |             | C Deplete pressure after<br>Auto Zero/Relative Me | r the test<br>asurement |      | Larg<br>Leak<br>Com | e Flow Check at Large Leak Che<br>Check at Leak Check<br>ment | c                    |
| Dowr                            | nload to Sensor(F4) |             | Audi                                              | itTrail (F7)            |      |                     | Upload from                                                   | n Sensor(F6)         |
| Add Setup                       | o (F10) D           | elete Setup | Save (F2)                                         | Print                   | F12) | C                   | Create SPC File (F8)                                          | Done (ESC)           |

Example: Vial1934 (default Test Type 1)

| art Info                              |                       |         |                           |                    |          |      |                                                      | - U                  |
|---------------------------------------|-----------------------|---------|---------------------------|--------------------|----------|------|------------------------------------------------------|----------------------|
| art Info                              |                       |         |                           | Setup              |          |      |                                                      | 8/21/2024 5:39/47 PM |
| artimo                                |                       |         | Test Information -        |                    |          |      |                                                      |                      |
| etup ID (Recipe):                     |                       |         | Flow                      | La sana            |          | Tin  | ne:                                                  |                      |
| Jefault001-T2                         |                       | -       | Min Flow                  | 1-05000            |          | No   | Step Name                                            | Time in secs         |
| art ID :                              |                       |         | Max Flow                  | 50.000             |          | 1    | Clamp / ISO                                          | 0.400                |
|                                       |                       |         | Large Flow Chk :          | 40.000             |          | 2    | Pre-Evacuation                                       | 2.000                |
| and the second                        |                       |         | Pressure                  |                    |          | 3    | Pressure Check                                       | 0.400                |
| ensor Name :                          |                       |         | Pressure Set :            | 2.4000             |          | 4    | Pre-Evacuation                                       | 10.000               |
| ensor M37                             |                       | -       | Pressure Max:             | 3.3000             |          | 5    | Evacuation 1                                         | 1.000                |
| easurement Units                      |                       |         | Pressure Min:             | 1.5000             |          | 6    | Pre-Stabilit                                         | 1.000                |
|                                       | Damas C               |         | ExtProceuro               |                    |          | 7    | Stability 1                                          | 1.000                |
| mperature :                           | Degree C              | -       | Pressure Min:             | 0.5000             |          | 8    | Large Leak Chec                                      | 1.000                |
| essure :                              | Torr                  |         | Pressure Max:             | 80000              |          | 9    | Evacuation 2                                         | 10.000               |
|                                       |                       |         | Gas                       |                    |          | 10   | Pre-Stability 2                                      | 2.000                |
| ow :                                  | ug/min                | •       | Gas Type :                | Air                |          | 11   | Stability 2                                          | 35.000               |
|                                       |                       |         |                           |                    | _        | 12   | Leak Check                                           | 0.500                |
| LashDo Consist Test Days              |                       |         | Deplete pressure after th | ie test<br>urement |          | Larg | Flow Check at Large Leak Chec<br>Check at Leak Check |                      |
| Ceakrox-special lesc Para             | meters                | Satur   | lansor                    | Detail             |          | COM  | nem (                                                |                      |
| V Group for Belative Mer              | asurement (Auto Zero) | semp    | - Audit                   | (E7)               |          |      |                                                      | Sensor(EE)           |
| V5: Minimum Relat                     | tive Flow             | 000000  |                           |                    |          |      |                                                      | Sensor(FO)           |
| · · · · · · · · · · · · · · · · · · · | 14                    | .000000 | V5                        |                    |          | 1    |                                                      |                      |
|                                       | tive Eleve            |         | (F2)                      | E Prir             | nt (F12) | 10   | Create SPC File (F8)                                 | Done (ESC)           |
| V6: Maximum Relat                     | LIVE FIOW 3.          | 000000  | V6                        |                    |          |      |                                                      | Conte (200)          |

#### Examples:

- Vial1934-T2 (Test Type 2 (-T2))
- Vial1934-T3 (Test Type 3 (-T3))
- Vial1934-T4 (Test Type 4 (-T4))
- 1 Relative Measurement pop up window
- 2 Relative flow Measurement enabled
- 3 **[Detail]** button to show Relative Measurement pop up window

### 7.2.4 Audit Trail



See LeakRx operating instructions for detail.

The 21 CFR Part 11 Regulation dictates that there should be a use of secure, computer-generated, time-stamped audit trails to independently record the date, time of user entries and actions that create, modify or delete electronic records.

The record changes should not obscure previously recorded information. Such Audit Trail documentation shall be retained for agency review and copying.

- All parameter changes in the Setup, Run, Maintenance and Sensor Configuration screens are recorded when the [Save (F2)] button is clicked.
- User actions in the screens are recorded as events in the Audit Trail.

#### Example

- For Setup screen, actions such as [Upload from Sensor (F6)], [Download to Sensor (F4)], [Add Setup], [Create SPC File (F8)] and [Done (ESC)] are considered as events.
- An user comment can be added in the comment field before saving new parameters or performing any of the above events. The comment will be automatically appended to the parameter changes or the event and saved in the Audit Trail.
- Additional events such as Successful Logins, Unsuccessful Login attempts and Logout are also recorded in the Audit Trail.

#### Audit Trail screens access

All the screens are provided with an **[Audit Trail]** button, which brings up the Audit Trail Query Builder and Result window.

All the screens are provided with an Audit Trail button, which brings up the Audit Trail Query Builder and Result Form.

| Part Info<br>Setup ID (Recipe): |              | Test Information           | Setup                |      |                     |                                                                | 9/11/2024 9:35:36 AM |
|---------------------------------|--------------|----------------------------|----------------------|------|---------------------|----------------------------------------------------------------|----------------------|
| Part Info<br>Setup ID (Recipe): |              | Test Information           |                      |      |                     |                                                                |                      |
|                                 |              | FIOW                       |                      |      | Tin                 | ne:                                                            |                      |
|                                 | •            | Min Flow                   | -0.5000              |      | No                  | Step Name                                                      | Time in secs         |
| Part ID :                       | _            | Max Flow                   | 50.000               |      | 1                   |                                                                | 0.400                |
|                                 |              | Large Flow Chk :           | 40,000               | _    | 2                   | Pre-Evacuation                                                 | 10.000               |
| and blame -                     |              | Pressure                   |                      |      | 3                   | Pressure Check                                                 | 0.400                |
| ensor Name :                    |              | Pressure Set :             | 1.0100               |      | 4                   | Pre-Evacuation                                                 | 5.000                |
| ensor M37                       | •            | Pressure Max:              | 5.0100               | _    | 5                   | Evacuation 1                                                   | 1.000                |
| easurement Units                |              | Pressure Min:              | 0.2100               | _    | 6                   | Pre-Stabilit                                                   | 1.000                |
| Degree C                        |              | - ExtPressure              |                      |      | 7                   | Stability 1                                                    | 0.500                |
| mperature : [Degree C           | -            | Pressure Min:              | 0.2100               |      | 8                   | Large Leak Chec                                                | 0.500                |
| essure : Torr                   | -            | Pressure Max:              | 20.000               | _    | 9                   | Evacuation 2                                                   | 5.000                |
|                                 |              | Gas                        |                      |      | 10                  | Pre-Stability 2                                                | 3.000                |
| w :  ug/min                     | •            | Gas Type :                 | Air                  | •    | 11                  | Stability 2                                                    | 10.000               |
|                                 |              |                            |                      |      | 12                  | Leak Check                                                     | 1.000                |
|                                 |              |                            |                      |      | 13                  | End                                                            | 0.010                |
|                                 |              | C Deplete pressure after t | the test<br>surement |      | Larg<br>Leak<br>Com | e Flow Check at Large Leak Chec<br>Check at Leak Check<br>ment |                      |
| Download to Sensor              | (F4)         | Audit                      | Trail (F7)           |      |                     | Upload from                                                    | S insor(F6)          |
| Add Setup (F10)                 | Delete Setup | Save (F2)                  | (듵) Print (F         | =12) | C                   | Create SPC File (F8)                                           | Done (ESC)           |

Example: Setup Screen with the [Audit Trail] button

1 [Audit Trail] button 2 Comment field

## 7.3 Run

leakR

Allows to run a leak test and ensuing data collection.

| Setup ID:   | Default001                         | *                                | Min Fow             | -0.5000       | No St        | lep Name      | T(secs)    |
|-------------|------------------------------------|----------------------------------|---------------------|---------------|--------------|---------------|------------|
|             |                                    |                                  | Max Flow            | 50.000        | 1 CI         | amp / ISO     | 0.40       |
| Second Test |                                    |                                  | Pressure Set        | 1.0000        | 2 Pr         | e-Evacuation  | 10.00      |
| Setup ID:   | Default001-12                      | 1                                | Pressure Min        | 0.2000        | 3 Pr         | essure Check  | 0.40       |
| Third Test  |                                    |                                  | Pressure Max        | 5.0000        | 4 Pr         | e-Evacuation  | 5.00       |
| Setup ID:   | Default001-T3                      | -                                | Deplete at End      | Yes           | 5 Ex         | acuation 1    | 1.00       |
|             |                                    |                                  | Gas                 | Air           | 6 Pr         | e-Stabilit    | 1.00       |
| Fourth Test | Defeutions T4                      |                                  | Test Type           | 1             | 7 St         | ability 1     | 0.50       |
| Jewp ID.    | [Delabiloo I-14                    | -                                |                     |               | 4            |               |            |
| 1           | US1124200002<br>0820M37050U010T(1) | Sensor M37 💌                     | 6.000               | ССІТ Т        | rial-000000  | .CSV          | 60.00      |
| 2           | Flow (ug/min):                     | 0.091                            | 5.000               |               |              |               | 50.00      |
| 3           | Pressure (Torr): 1.868             |                                  | E 4.000             |               |              |               | 40.00      |
| 4           | External pressure                  | 98.31                            | E 3.000             |               |              |               | 30.00      |
| 5           | Status                             | Idle                             | 2.000               |               |              |               | 20.00      |
| 6           |                                    |                                  | 1 000               |               |              |               |            |
|             |                                    |                                  | 1.000               |               |              |               | 0.00       |
| 7           |                                    |                                  | 0.000               | 10 15         | 20           | 20 20         | -10.00     |
|             |                                    |                                  | v o                 | 10 15         | Time (sec)   | 25 30         | 30         |
| 8           |                                    |                                  |                     | (8.031,2.1)   |              |               |            |
| 9           | Auto Signature<br>Auto Result Save |                                  |                     | Start(F1)     | Stop(F3)     | Test Type(F5) | Print (F9) |
| Save (      | (F2) Change Tes                    | t ID (F4) Show Large LeakChk Set | up 🔲 Audit Trail (F | 7) <b>K</b> 2 | Resize (F10) | 6             | Done (ESC) |
|             |                                    |                                  |                     |               |              |               |            |

Test cycle can be initiated from the software or remotely from **START** button on instrument or start input wired to 37 pin I/O connector on back of the instrument.

#### Change Test ID Tab





#### Show Large LeakChk Setup

| P2) El Change T                    | ts(ID (F4) 8h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow Large Lei kChik Setu                                                      | p 📑 Audit Tiali (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n 534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lesize (F10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Done (ESC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto Signature<br>Auto Result Seve |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Start(P1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stop(#3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test Type(#5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Print (PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| arge Leak Test Result              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                         | 0.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 20 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8<br>ime (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0 8.0 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Status                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | de                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| External pressure                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.65                                                                         | 1 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pressure (psig):                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 068                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Flaw (colmin):                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                          | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0122012005C250(1)                  | (Sensor 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Э                                                                            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TR003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -001061.CSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              | Test Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 Preta<br>11 Stabile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bihy<br>y 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              | Depiete at End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 Stabile<br>8 Large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y<br>aniY<br>ation ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Default001-T2                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              | Pressure Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 Pre-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acă<br>atV<br>hV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              | Max Flow<br>Pressure Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Pre-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | act .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Deta-(001                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              | Me Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No Step 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | arre 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (secs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.000                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.000                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.000                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCIT                                                                         | Trial-00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.CSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Type                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gas                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Air                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deplete at End                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pressure Min                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2000                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pressure Set                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Max Flow                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.000                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | Max Flow<br>Pressure Set<br>Pressure Max<br>Deplete at End<br>Gas<br>Test Type<br>5.000<br>5.000<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d00-12<br>(Dete.d | Max Flow Pressure Set Pressure Max Pressure Max Deplete at End Gas Test Type | Max Flow         50.000           Pressure Set         1.0000           Pressure Max         0.2000           Pressure Max         5.0000           Deplete at End         Yes           Gas         Air           Test Type         1           6.000         CCIT           5.000         CCIT           5.000         CCIT           9         1           0         CCIT           9         0           0         CCIT           9         0           9         0           9         0           9         0           9         0           9         0           9         0           9         0           9         0           9         0           9         0           10         0           11         0           12         0           9         0           14         0           14         0           14         0           14         0           15         0 | Max Flow         50.000           Pressure Set         1.0000           Pressure Min         0.2000           Pressure Max         5.0000           Deplete at End         Yes           Gas         Air           Test Type         1           Defected         Yes           5.000         CCIT Trial-000000           5.000         Status           Defected:         Pressure file           Defected:         Pressure file           Defected:         Pressure file           Defected:         Status           Status         Ute           Status         Ute           Status         Ute           Test Type         1 | Max Flow         50.000           Pressure Set         1.0000           Pressure Min         0.2000           Pressure Max         5.000           Deplete at End         Yes           Gas         Air           Test Type         1           6.000         CCIT Trial-000000.CSV           5.000         Pressure Max           State         Max File           Pressure Max         0.000           State         1           Bizzo12005C200(1)         Ferror (I)           Pressure file         0.000           Pressur | Max Flow         50.000           Pressure Set         1.0000           Pressure Min         0.2000           Pressure Max         5.0000           Deplete at End         Yes           Gas         Air           Test Type         1           0         CCIT Trial-0000000.CSV           6.000         CCIT Trial-0000000.CSV           6.000         Mar Flaw           (privactor)         (privactor)           (privactor)         < | Max Flow         50.000           Pressure Set         1.0000           Pressure Min         0.2000           Pressure Max         5.0000           Deplete at End         Yes           Gas         Air           Test Type         1           Detexteri         1 |

1 Large leak test result

## 7.4 Maintenance

Allows to view sensor configuration information and make minor changes. This screen is password protected.

| LeakRx                                                                                                                 |                                                                           |                                  |                                                                                          |                                   |                                                                                                                                                                                                    |                                                                                          |                            | - 0 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|-----|--|--|--|--|
|                                                                                                                        |                                                                           |                                  |                                                                                          | Sensor Maintena                   | ince                                                                                                                                                                                               |                                                                                          | 9/4/2024 6:04:32 PM        |     |  |  |  |  |
| SN: 0<br>Sensor ID:<br>Address:<br>Cycle Count:                                                                        | 820M37050U0101<br>020318<br>Sensor M3<br>08/20 0<br>1 IZ Or               | 7<br>150 U 010<br>1-Line<br>2909 | Current Readi<br>Auto Ze<br>Flow<br>Static F<br>Tompo<br>External                        | ngs ro Flow Rato Prossure prature | Engineering<br>C.0928<br>1.8681<br>30.0384<br>>98.3106                                                                                                                                             | A/D Counts<br>3227<br>13025<br>20744<br>>65535                                           | ugimin<br>Torr<br>Degree C | •   |  |  |  |  |
| Type: Convention<br>Gas: Mass Flow<br>Customized Valve<br>Flow Auto Zero (R<br>Vacuum Testing M<br>Total Test Types: 4 | al Leak Test<br>e Control with 13 S<br>telative Measurem<br>Messages<br>4 | teps<br>ent)                     | Names         A1           A2         A4           U6         U8           X4         C1 | Value                             | Description<br>Analog Output Full St<br>000000 Analog Output Full St<br>000000 DIA Calibration Coef<br>9.00000 Barometric Condition<br>0 Long Format<br>1000 Hold Cycle Number J<br>25 Buffer Size | cale<br>1 in kPa<br>Mer Test                                                             |                            |     |  |  |  |  |
| LCD Calibrate                                                                                                          | LCD Activate                                                              | LCD Deactivate                   | C2<br>C3                                                                                 | 1.01                              | 270E-03 First Order Flow Coel<br>0.00000 Second Order Flow C                                                                                                                                       | f (cc or ug)/min/count<br>Coef (cc or ug)/min/count*2                                    |                            |     |  |  |  |  |
| Remote Start                                                                                                           | Remote Stop                                                               | Remote TT                        | C4<br>C5                                                                                 |                                   | 0.00000 Third Order Flow Coe<br>0.00000 Lo Offset Flow Coef (r                                                                                                                                     | ef Flow Coef (cc or ug)/min/count*3<br>cc or ug)/min                                     |                            |     |  |  |  |  |
| Comment                                                                                                                |                                                                           | Audit Trail (F7)                 | C6<br>C7<br>C8                                                                           |                                   | 0.00000 Lo First Order Flow C<br>0.00000 Lo Second Order Flo<br>0.00000 Lo Third Order Flow                                                                                                        | coef (cc or ug)/min/count<br>w Coef cc or ug)/min/count*2<br>Coef (cc or ug)/min/count*3 |                            |     |  |  |  |  |
| Downl                                                                                                                  | oad to Sensor                                                             | (F4) Up                          | bload from Senso                                                                         | r(F6) Vie                         | Download to Sensor(F4) Upload from Sensor(F6) View Sensor Config (F8) Save (F2) Done (ESC)                                                                                                         |                                                                                          |                            |     |  |  |  |  |

## 7.5 Sensor Configuration

#### [Firmware] tab

| LeakRx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                      | - 0 ×               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|---------------------|
| The information is for view only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Sensor Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | figuration   |                      | 9/4/2024 6:05:22 PM |
| Firmware Valve Setup UUT DAQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                      |                     |
| SH GAZYSSUUST<br>GAZYSSUUST<br>GAZYSSUUST<br>Sensor ID: GAZYSSUUST<br>Address: II // Declare<br>Cycle Count. 200<br>Buffersta Skall III // Declare<br>Cycle Count. 200<br>Buffersta Skall III // Declare<br>// Cycle Count. 200<br>// C | <ul> <li></li></ul> | None         Value           None         Value           Image: State Stat | Dee:         |                      |                     |
| Download to Sensor(F4) Upload from Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor(F6)            | Ascii Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Encrypt Load | Ascii Save           | Encrypt File        |
| Audit Trail (F7) Add Sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or                  | Save (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Delete (F8)  | Change Password(F10) | Done (ESC)          |

#### [Valve Setup] tab

Boxes checked indicate when valve is energized.

| ne Action<br>SO SO Solution<br>Check Ext-Pres-On<br>uation on GrossLeakC | 1                             | Clamp<br>P<br>P<br>P          | Pres/Test                         | Exhaust                                                                                                                                                                                                               | Fill/Balance                                                                                                                                                                                                                                       | Quick Fill                                                                                                                                                                                                                                                                                                            | Isolate                                                                                                                                                                                                                                                                                                                                                           | Custom 1                                                                                                                                                                                                                                                                  | Custom 2                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SO Luation Check Ext-Pres-On Luation I GrossLeakC                        | 1                             | 0 21 21                       |                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| uation Check Ext-Pres-On uation I GrossLeakC                             | 1                             | य<br>य                        |                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                     | <b>1</b>                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| Check Ext-Pres-On<br>uation GrossLeakC                                   | 1                             | 1                             |                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       | 1.                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| uation GrossLeakC                                                        |                               | <b>1</b>                      |                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       | R                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| on 1 GrossLeakC                                                          |                               | 1.                            |                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                          | Chk                           | R                             | ¥.                                |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| lit GrossLeakC                                                           | Chk                           | R                             | ¥.                                |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| 6                                                                        |                               | R                             | 9                                 |                                                                                                                                                                                                                       | ¥.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| ak Chec LargeLeakC                                                       | hk                            | R                             | 9                                 |                                                                                                                                                                                                                       | N.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| in 2                                                                     |                               | R                             | 9                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| lity 2 ZeroFlow                                                          |                               | F                             | R.                                |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                          |                               | R                             | R.                                |                                                                                                                                                                                                                       | R                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| ck LeakChk                                                               |                               | R                             | 1                                 |                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| Stop                                                                     |                               |                               |                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |
| in 2<br>lity i<br>ck                                                     | 2 ZeroFlow<br>LeakChk<br>Stop | 2 ZeroFlow<br>LeakChk<br>Stop | ZeroFlow IZ<br>LeskChk IZ<br>Stop | P         P         P           2         ZeroFlow         P         P           IP         IP         IP         IP           LeakOk         IP         IP         IP           Bop         IP         IP         IP | P         P           2         ZendTow         P         P           2         ZendTow         P         P           4         P         P         P           LeakONA         P         P         P           Stop         P         P         P | IZ         IZ         IZ           2         ZeroFlow         IZ         IZ           IZ         IZ         IZ         IZ           IZ         IZ         IZ         IZ           Iz         IZ         IZ         IZ           Stap         IZ         IZ         IZ           Stap         IZ         IZ         IZ | IP         IP         IP           2         ZeroFlow         IP         IP           2         IP         IP         IP           2         IP         IP         IP           2         IP         IP         IP           2         IP         IP         IP           LealON         IP         IP         IP           Stop         IP         IP         IP | IP         IP         IP           2         ZeroFbre         IP         IP           IP         IP         IP         IP           IP         IP         IP         IP           LoaOAk         IP         IP         IP           Stop         IP         IP         IP | IV         IV         IV         IV           2         ZeroFbre         IV         IV         IV         IV           IV         IV         IV         IV         IV         IV         IV           LealON         IV         IV         IV         IV         IV         IV         IV           Stop         IV         IV         IV         IV         IV         IV         IV |

#### [UUT DAQ] tab

A/D counts is digital counts from analog sensor. Engineering is value in applicable units.

| Current Rea    | adings   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |                         |                  |                 |              |
|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------------|------------------|-----------------|--------------|
| Garrent rect   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |                         |                  |                 |              |
|                | uunigo   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |                         | N                | Step Name       | Timer (sec)  |
| Auto Zero      | Flow     | Enginee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aring A/D C        | ounts                |                         | 1                | Clamp / ISO     | 0.40         |
| -              |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | La tarta             |                         | 2 Pre-Evacuation |                 | 10.00        |
| Flow R         | late     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06 32              | 25 Jug/min           | <u> </u>                | 3 Pressure C     | Pressure Check  | 0.40         |
| Static Pre     | essure   | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97 13              | Torr                 | *                       | 4                | Pre-Evacuation  | 5.00         |
| Temperature    |          | perature 30,1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 20              | 797 Degree C         | *                       | 5                | Evacuation 1    | 1.00         |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 00             | TOT                  | _                       | 6                | Pre-Stabilit    | 1.00         |
| External pr    | ressure  | >98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106 >65            | 535                  |                         | 7                | Stability 1     | 0.50         |
| Test Type      | Ter      | stType1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | *                    |                         | 8                | Large Leak Chec | 0.50         |
|                | 1        | The second secon |                    | -                    |                         | 9                | Evacuation 2    | 5.00         |
| Group          | Name     | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uesc Desc          | of Marco             |                         | - 10             | Pre-Stability 2 | 3.00         |
| V-Group        | V2       | 50.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximum Elem Ord   | w Or Leak Mass       |                         |                  | Stability 2     | 10.00        |
|                | 1/2      | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flam Componentia   |                      |                         |                  | Leak Check      | 1.00         |
|                | VE       | 1.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum Elevator   | Polatice Management  | (krai(comin or ugimin)) |                  |                 | 0.01         |
|                | 10       | 2 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manimum Flow for A | Pelative Measurement |                         |                  |                 |              |
|                | 10       | 40.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximum Flow for   | Alarm Flam           |                         |                  |                 |              |
|                | */       | 40.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. Gross Leak Pr | ow Alarm Flow        |                         | -                |                 |              |
|                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |                         |                  |                 |              |
| ownload to Ser | nsor(F4) | Upload f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rom Sensor(F6)     | Ascii Load           | Encrypt Load            |                  | Ascii Save      | Encrypt File |

## 7.6 Reports



See LeakTek or LeakRx operating instructions for detail.

Allows to load and analyze test data files. Allows to print any applicable test results.

|    |            |            |          |      | SF           | °C Report        |         |                             | 9/4/2024 6:27:33 PM                       |
|----|------------|------------|----------|------|--------------|------------------|---------|-----------------------------|-------------------------------------------|
| No | TestStatus | Final_Flow | Pressure | Time | Signature_ID |                  | Comment |                             | User Name                                 |
|    |            |            |          |      |              | Current Record 1 | to 1000 | Page                        | 1 of 2<br>Sign Report                     |
|    |            |            |          |      |              |                  |         |                             | Load File (F2)<br>SPC (F4)<br>Print(F6)   |
|    |            |            |          |      |              | Chart Var        | iables  | Sample Size 05 No of Points | Create SPC(F8)<br>Save(F10)<br>Done (ESC) |
|    |            |            |          |      |              | 1                |         | 0                           | Audit Trail (F7)                          |

## 7.7 Analysis

Allows to analyze and print multiple flow signatures.



#### Displays test signature curves of selected tests

In the Search section, two list boxes are used to select files.

The user can select from 1 to 5 files to display separately and simultaneously.

The Select All check box lists all file sources when it is checked. If this box is not checked, the search function is active and the source file is selected per the search criteria.

The user can also change the axis scales to analyze the signature process.

Files can be added or removed from the graph by double clicking the name in the left or right list box, or by selecting the name and then clicking the arrow buttons between the two list boxes.

## 7.8 System



Reserved for Pfeiffer Vacuum personnel.

Allows to customize the software and the test unit.

This screen is password protected

Some fields shown are accessible with Engineer or Administrator password (ex. Login Max Try Times).

|                                                                                                                                                                                                                                                        |          | Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | em Configuration                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/4/2024 6 20 56 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication Type"<br>Communication Type"<br>Last Senor Tame(Benet)<br>Ado Select Tame (sec)<br>Command Osity<br>PortNamer 4<br>Namber of Senors 4<br>Sear Rote 1<br>Mar Scan PortNet<br>Assigned IP Address<br>Mar Scan PortNet<br>Last Scan PortNet | Internet | Application Applic | Test Type * annow resting * assword Protection the RM Sover * the SPC * Audo San * Temperature In Run Son IOLS Parsword exerts bad the digital inputaive to pol file, ve signed file to the same folder .Data Folder * | Other Configuration<br>Application Name *<br>App Sur Tele *<br>SPC File Extension *<br>Active Sensor No<br>Active Test2<br>B_V/s<br>Signature Buffer Size<br>Test Type Courso Per<br>Fall Type Courso Per<br>Signature Max Value Ratio Percent<br>Signature Max Value Ratio Percent<br>Signature Value Ratio Percent<br>Signature Value Ratio Percent<br>Signature Value Ratio Percent<br>Signature Value Ratio Percent | (aakfix           (aakfix           (aakfix           (aakfix           (brite           (brite <t< th=""></t<> |
|                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        | Logoff Wait Time                                                                                                                                                                                                                                                                                                                                                                                                        | 60 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### [User Account Management (F10)] tab

Administrator required setup with password on first login with LeakRx

| 🖳 LeakRx-User Admini | stration           |           |                                   | ×                            |
|----------------------|--------------------|-----------|-----------------------------------|------------------------------|
| UserID               | Administrator      | •         |                                   |                              |
| First Name           | Administrator      |           | Middle Name                       |                              |
| LastName             |                    |           | Inactive                          |                              |
| Access Level         | Administrator      | •         | Expired 🗆                         |                              |
|                      |                    |           | Digital Signature Signature file: | dministrator.pfx<br>Ken Qian |
| Creation Date        | 5/1/2010 12:00:00  | AM        | Import Sig File                   | Import Sig Picture           |
| Expiration Date      | 10/20/2021 2:28:53 | 3 PM      |                                   |                              |
| Comment              |                    |           |                                   |                              |
| Audit Trail (F7)     | Add User           | Save (F2) | Change<br>Password (F             | 10 Done (ESC)                |

## 8 Testing

The equipment is designed for CCIT.

Typically, a fully closed container (examples: vial, syringe, bottle, bag, etc.) at barometric conditions is placed inside a vacuum chamber.

Any leak from the container into the vacuum chamber is extracted into the equipment.

For CCIT where the UUT is a sealed container at barometric pressure, UUT's with large leaks can be fully evacuated and therefore have exhibit no flow condition in final leak check. There are two initial opportunities ("Pressure Check" and "Large Leak Check") to ensure UUTs with large leaks are identified and abort test early.

The equipment runs the following sequence after the **[Start]** button is pressed (from software, front panel button or contact closure wired to the back panel D-connector).

## 8.1 Standard test sequence

#### Sequence

- 1. Clamp/Iso
  - If equipped, external valve for clamp/seal mechanism actuates.
  - Internal reservoir isolated to maintain vacuum setting during initial UUT evacuation.
- 2. Pre-Evacuation 1
  - Vacuum supply source connected directly to UUT.
- 3. Pressure Check
  - Initial pressure based check to detect gross leak (example: chamber lid not installed correctly). User set time for vacuum to reach user set pressure of vacuum pull down curve.
- 4. Pre-Evacuation 2
  - Vacuum supply source connected directly to UUT.
- 5. Evacuation 1
  - Internal reservoir open to vacuum source, IMFS active for balance of test steps.
- 6. Pre-Stability 1
  - Internal reservoir is vacuum supply source.
  - Balance vacuum level of UUT and internal reservoir.
- 7. Stability 1 (Measurement)
  - 100 % flow across sensor.
  - Flow develops between reservoir and UUT.
- 8. Large Leak Check
  - Second early test to detect large leak (example: very large defect in UUT) utilizing the sensor and higher limits A Large Leak Check button is available to the user on the bottom panel of the Run screen to view the large leak test settings. Large Leak Check flow test result is displayed in the Run screen.
- 9. Evacuation 2
  - Internal reservoir open to vacuum source.
- 10. Pre-Stability 2
  - Reservoir is vacuum supply source.
  - Balance UUT and internal reservoir
  - Relative Measurement

At end of step, the internal reservoir and UUT are at same pressure and thus flow is zero. If relative measurement is enabled, the flow is zeroed for the current test in process, test result is relative to the zeroed flow condition. The End of Test result with reflect "RM" designation.

- 11. Stability 2 (Measurement begins)
  - 100 % flow across sensor.
  - Flow develops between reservoir and UUT.
- 12. Leak Test
  - If the UUT meets the test criteria (pressure, leak rate) within the set test time, the UUT has
    passed the test. All valves will be de-energized to deplete the pressure from the UUT and to

contain the internal pressure. The pass message will be displayed and the green "Pass" light will be indicated.

 If the UUT fails the test criteria at any point during the test cycle, the UUT has failed the test. If the test fails, the failure message will be displayed a red "Fail" light will be indicated.

13. End

- Vacuum to UUT port closed.
- End of test signal (poll results).
- Resupply internal reservoir to user defined vacuum setting. Live flow reading (some fluctuation is reflected).



i

The user should be familiar with flow, pressure, and temperature measurement units before setting up the equipment.

It is the user's responsibility to properly define leak flow rates and tolerances for a specific application.

Test Pass/Fail criteria, stabilization, and test time are configurable via the software.

| LeakRx                          |                |            |                            |                        |          |                     |                                                               | - 0                  |
|---------------------------------|----------------|------------|----------------------------|------------------------|----------|---------------------|---------------------------------------------------------------|----------------------|
|                                 |                |            |                            | Setup                  |          |                     |                                                               | 9/11/2024 9:35:36 AM |
| Part Info<br>Setup ID (Recipe): |                |            | Test Information -<br>Flow |                        |          | Tir                 | ne:                                                           |                      |
| Default001                      |                |            | Min Flow                   | -0.5000                | _        | No                  | Step Name                                                     | Time in secs         |
| Part ID                         |                | _          | Max Flow                   | 50.000                 |          | 1                   |                                                               | 0.400                |
|                                 |                |            | Large Flow Chk :           | 40,000                 |          | 2                   | Pre-Evacuation                                                | 10.000               |
|                                 |                |            | Pressure                   |                        |          | 3                   | Pressure Check                                                | 0.400                |
| Sensor Name :                   |                |            | Pressure Set :             | 1.0100                 |          | 4                   | Pre-Evacuation                                                | 5.000                |
| Sensor M37                      |                | •          | Pressure Max:              | 5.0100                 |          | 5                   | Evacuation 1                                                  | 1.000                |
|                                 |                |            | Pressure Min:              | 0 2000                 |          | 6                   | Pre-Stabilit                                                  | 1.000                |
| leasurement Oni                 |                |            | EntDesses                  | lerree                 |          | 7                   | Stability 1                                                   | 0.500                |
| mperature :                     | Degree         | c <u> </u> | Pressure Min:              | 0.2100                 |          | 8                   | Large Leak Chec                                               | 0.500                |
| essure :                        | Torr           | -          | Pressure Max               | 20,000                 |          | 9                   | Evacuation 2                                                  | 5.000                |
|                                 | T SH           |            | 0.00                       |                        |          | 10                  | Pre-Stability 2                                               | 3.000                |
| ow :                            | ug/min         | -          | Gas Type :                 | Air                    |          | 11                  | Stability 2                                                   | 10.000               |
|                                 |                |            | ous type.                  | 1                      | _        | 12                  | Leak Check                                                    | 1.000                |
|                                 |                |            |                            |                        |          | 13                  | End                                                           | 0.010                |
|                                 |                |            | C Deplete pressure after   | rthe test<br>asurement |          | Larg<br>Leai<br>Com | e Flow Check at Large Leak Che<br>Check at Leak Check<br>ment | ec                   |
| Dowr                            | nload to Senso | r(F4)      | Audi                       | itTrail (F7)           |          |                     | E Upload from                                                 | m Sensor(F6)         |
| Delete Setup                    |                |            | Save (F2)                  | Prir                   | it (F12) | C                   | Create SPC File (F8)                                          | Done (ESC)           |

## 8.2 Setting parameter in new Setup ID (recipe)

- 1. Create new SetupID (recipe) and Input applicable Part Info (left side of above).
  - 2. In Test information (center area of above).
    - a. Flow
      - i. Initially set Max flow at Full Scale of the sensor (typically 50 µg/min).
        - ii. Initially set Min flow at -1 % of Full Scale of the sensor (example: for 50 ug/min full scale sensor, min flow would be -0.5 ug/min).
      - iii. Initially Set Large Flow check high.
    - b. Pressure (pressure at internal sensor)
      - i. Set: target test pressure
      - ii. Min: set near zero
      - iii. Max: with a leak from the container into a conformal chamber (min volume), P increases slightly depending on leak rate and length of test.

Set initially high, monitor and set with tolerance to avoid nuisance conditions. Refine with large part trial.

- c. ExtPressure (pressure at chamber)
  - i. Min: set near zero
  - ii. Max: initially set low
  - iii. Pressure Check in Step 3 (see chapter "Standard Test Sequence").

Time in previous Pre-evacuation step and ExtPressure Max limit influence the P Max result.

Typically a 100T Full Scale sensor is utilized (see chapter "Standard test sequence": Pneumatic diagram, item (a). Target time so value is less than 50 % of external pressure sensor. By setting pressure low initially, a test will fail and show the pressure value it achieved. Use several good parts and turn on the verification orifice. Set Max pressure slightly above the max pressure from the tests.

Go to Run screen to perform test. Change to Setup screen to modify test and then back to Run screen to confirm.

Wait when switching between screens for PC/Sensor communications.

- d. Large Flow Chk in Step 8 (see chapter "Standard Test Sequence").
- i. Run similar test to set Large Flow limit.

The Pre-evaculation of set 4 and the Flow limit influence the reading. During the test, the large flow limit will display on the screen temporarily, adjust test time and flow limit accordingly.

After getting past the Large Leck Check of step 8, abort the test until parameters are set. e. Leak Chk in step 12 (see chapter "Standard Test Sequence").

i. Similar test to step 8.

Time Evacuation 2 (step 9) and Stability 2 (step 11) most influence the test result.

Increasing the Evacuation step reduces the background of a master part.

Use of a long Stability 2 time (step 11) and analyzing signature curves will indicate how much Stability 2 time can be reduced while obtaining acceptable spread between OK and NOK parts.

## 8.3 Verification procedure

Periodic verification is recommended during the normal operation of the equipment.

#### Procedure

- 1. Run the test with a known good UUT and the internal verification orifice open. This should Fail the test.
- Run a similar good UUT without the internal verification orifice closed (off). This should Pass the test.
- 3. If this sequence does not give the intended results, the equipment (SpeedAir 3050, tooling and verification orifice) should be checked and verified.
- 4. The procedure should be repeated until intended results are obtained.

## 9 Shut down

## 9.1 Standard shutdown procedure

The system is sensitive to moisture. Long periods at atmospheric conditions can allow moisture to enter the system and any virtual leaks to re-presurrize.

If shutdown is completed properly with leak tight system, the system will remain under vacuum (without moisture) over several days (weekend).

- 1. Run a test with a blank or empty chamber and do not exhaust chamber.
- 2. Remove Incoming Air Supply via supplied shut off (relieves pressure from equipment).
  - Do not shut off with ball valve. This method does not relieve pressure.
  - All valves are air pilot normally closed, removing the pressure will cause them to close.
  - Shut off vent gas (N<sub>2</sub>) off.
- 3. Turn off the equipment power.

Be sure to power on before restoring air and  $N_2$  supply.

## 10 Decommissioning

## 10.1 Shutting down for longer periods

- 1. Shut down the equipment as per the standard shutdown procedure.
- 2. Disconnect the trolley mains power cable from any power sources (see chapter "Storage").
- 3. Disconnect pneumatic inlet.
- 4. Disconnect CDA/N<sub>2</sub> venting supply.
- 5. Store the equipment in accordance with storage instructions (see chapter "Technical characteristics").

## 10.2 Recommissioning

No special precautions

Follow the installation procedure (see chapter "Commissioning").

## 10.3 Disposal

In accordance with Directive on the treatment of waste electrical and electronic equipment, and Directive on the restriction of hazardous substances, end-of-life products can be returned to the manufacturer for decontamination and recovery.

Any obligation of the manufacturer to take back such equipment shall apply only to complete, unmodified, equipment, using Pfeiffer Vacuum original spare parts, sold by Pfeiffer Vacuum and including all assemblies and sub-assemblies.

This obligation does not cover the shipping cost to a reclamation facility or services provided, for which the customer will be invoiced.

Familiarize yourself with the service request procedure and fill in the declaration of contamination when returning products to our service centers (see chapter "Service solutions by Pfeiffer Vacuum", page 42).



#### **Environmental protection**

The product and its components **must be disposed of in accordance with the applicable regulations relating to environmental protection and human health**, with a view to reducing natural resource wastage and preventing pollution.

Our products contain different materials which must be recycled (see chapter "Environmental conditions").

## 11 Malfunctions

## 11.1 Troubleshooting guide

The following table summarizes common problems that may occur, and repair recommendations.

| No. | Description                                                          | Possible Cause                                                                                                                                                                        | Repair Action                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | No communi-<br>cation with<br>PC and data<br>saving                  | Communication prob-<br>lem                                                                                                                                                            | <ul> <li>Check 9-pin RS-232 cable between equipment<br/>and PC.</li> <li>Check PC COM port settings.</li> <li>Check SpeedAir 3050 address.</li> <li>Power down the unit, wait 2 minutes before power up.</li> </ul>                                                                                                                                                                                                            |
| 2   | Test doesn't<br>start                                                | Damaged wiring<br>Faulty control panel<br>components                                                                                                                                  | <ul> <li>Check for damage to internal wiring.</li> <li>Consult Pfeiffer Vacuum.</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
| 3   | "?" Symbol<br>near the test<br>status (e.g.,<br>"Idle")              | Pressure is too high<br>for this operating/cali-<br>bration flow regime                                                                                                               | <ul> <li>Check vacuum pump.</li> <li>Compare pressure setting in "Torr" to the A4 value from Maintenance screen. A4 should be larger than your pressure setting.</li> </ul>                                                                                                                                                                                                                                                    |
| 4   | Test fails with<br>UnderPress<br>message                             | Pressure is under the<br>minimum pressure<br>setting                                                                                                                                  | <ul> <li>Check that vacuum controller and needle valve operating, or its filter are not clogged.</li> <li>Check your set up with software.</li> </ul>                                                                                                                                                                                                                                                                          |
| 5   | Test fails with<br>Gross Leak<br>message                             | Pressure is over the maximum allowed pressure                                                                                                                                         | <ul> <li>Check for gross leak, missing UUT that do not allow vacuum level to be reached at the given test time.</li> <li>Check your set up of max. pressure or pre-Evacuation. Time using software.</li> </ul>                                                                                                                                                                                                                 |
| 6   | Valves not<br>working                                                | Damaged wiring<br>Bad valves<br>Faulty control panel<br>components                                                                                                                    | <ul> <li>Check for damage to internal wiring.</li> <li>Check valves. Consult Pfeiffer Vacuum for replacement parts.</li> <li>Consult Pfeiffer Vacuum.</li> </ul>                                                                                                                                                                                                                                                               |
| 7   | Pressure sen-<br>sor readings<br>are incorrect                       | Measurement units<br>are not set properly<br>Pressure sensor has<br>large offset<br>Pressure sensor cali-<br>bration coefficients<br>corrupted<br>Loose connection<br>No power supply | <ul> <li>Verify measurement units using software.</li> <li>Check pressure sensor calibration and verify proper calibration coefficients.</li> <li>Check for 12 VDC power supply.</li> <li>In case of large reading offset, typically pressure sensor was over-pressurized.</li> <li>Contact Pfeiffer Vacuum.</li> </ul>                                                                                                        |
| 8   | Sensor shift<br>of flow                                              | Wrong units of meas-<br>ure<br>Temperature variation<br>Sensor tilted                                                                                                                 | <ul> <li>Check set up and units. Check that sensor installed in a flat/horizontal position.</li> <li>Go to Maintenance screen and check A/D counts of Flow sensor. Tilt sensor to see if "zero" returns.</li> <li>Perform auto zero but only after consulting with Pfeiffer Vacuum and if A/D counts are less than 200 counts for first Gen sensor or 3000 for second Gen sensor.</li> <li>Consult Pfeiffer Vacuum.</li> </ul> |
| 9   | Sensor flow<br>reading high<br>all the time,<br>and between<br>tests | Leak downstream to<br>the sensor<br>Evac valve not open-<br>ing<br>Pressure valve leak<br>Sensor zero shift or<br>unit has moved                                                      | <ul> <li>Isolate sensor by plugging the UUT outlet, check downstream fittings and tubing to the sensor.</li> <li>Check/replace Test, Verification and/or Exhaust valve.</li> <li>Check/replace Evac valve.</li> <li>If high readings persist, check A/D counts and compare to original calibration.</li> <li>Auto zero the sensor if A/D counts are under 200.</li> </ul>                                                      |

| No. | Description                                                                                          | Possible Cause                                                                                                                                                                                                                                      | Repair Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | Sensor flow<br>reading is too<br>low or nega-<br>tive (A/D<br>counts is "0").                        | Leak through the<br>evac line<br>Leaking Evacuation<br>valve<br>External leak through<br>the expansion tank or<br>isolation valve<br>Unstable supply pres-<br>sure - pressure drops<br>down<br>Unit clogged                                         | <ul> <li>Check/replace inlet filter.</li> <li>Check supply pressure.</li> <li>Isolate and check Evacuation/by-pass lines.</li> <li>Check leak through Evacuation valve.</li> <li>Check for expansion tank or isolation valve leak.</li> <li>Verify calibration coefficients.</li> <li>Check for leaks at the sensor outlet plugs and fittings.</li> <li>Consult Pfeiffer Vacuum for internal cleaning instructions.</li> <li>DO NOT AUTOZERO the flow sensor if flow or any A/D counts are "0".</li> </ul> |
| 11  | Sensor flow,<br>pressure and<br>temperature<br>readings do<br>not make<br>sense                      | Calibration scrambled<br>Power supply dam-<br>aged                                                                                                                                                                                                  | <ul> <li>Verify power supply outputs.</li> <li>Verify calibration data with original cal. sheet.</li> <li>Check/increase buffer size.</li> <li>Check that unit reacts normally (pressure flow readings vary with flow).</li> <li>Recalibrate the unit.</li> </ul>                                                                                                                                                                                                                                          |
| 12  | Cannot pass<br>verification<br>test with the<br>verification or-<br>ifice                            | Upstream leak to the<br>instrument<br>Faulty pressure regu-<br>lator<br>Verification orifice<br>plugged<br>Leaking Evacuation<br>valve<br>Isolation valve is not<br>closing during stability<br>and test time<br>Sensor measurement<br>is incorrect | <ul> <li>Check for upstream and expansion tank connections.</li> <li>Replace pressure regulator.</li> <li>Plug the equipment output and repeat the test.</li> <li>Externally connect to another verification orifice to verify that connected verification orifice is not plugged. If plugged, replace connected verification orifice.</li> <li>See line no 2. Consult Pfeiffer Vacuum to replace defective valves.</li> <li>See lines no 6 and 7.</li> </ul>                                              |
| 13  | Test starts/<br>stops by itself<br>when con-<br>nected to a<br>remote PLC<br>or PC control<br>system | Current leakage into<br>the opto-isolated in-<br>puts of the sensor                                                                                                                                                                                 | Check that start and stop signals are through dry con-<br>tact relay. Install one if missing.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14  | Sensor pres-<br>sure or flow<br>readings un-<br>stable                                               | Incorrect remote I/O<br>connections<br>Unstable power sup-<br>ply<br>Bad connection<br>Upstream pressure<br>fluctuation                                                                                                                             | <ul> <li>Disconnect I/O connector, to isolate for test<br/>equipment possible common-ground problems.</li> <li>Check power supply.</li> <li>Check equipment or sensor connections.</li> <li>Check internal sensor connection.</li> <li>Check upstream pressure, increase expansion<br/>tank size, and add an isolation valve if required.</li> </ul>                                                                                                                                                       |

| No. | Description                                                                                         | Possible Cause                                                                                                                                         | Repair Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | Inconsistent<br>test perform-<br>ance - High<br>part failure al-<br>though verifi-<br>cation passes | Pressure supply or<br>pressure regulator is<br>un-stable                                                                                               | <ul> <li>Use software and monitor test pressure at end of<br/>consecutive tests. Pressure should be stable<br/>within a few hundreths of a psi. If not, check the<br/>supply line, additional buffer tank may be re-<br/>quired. Check for "cross talk" between adjacent<br/>pressure regulators, check/replace the pressure<br/>regulator.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16  | Low flow or<br>backflow fail-<br>ures                                                               | Improper test set up<br>clamp/seals are mov-<br>ing during test, exter-<br>nal leak into test cavi-<br>ty, or part volume is<br>not stable during test | <ul> <li>Low flow failure is a result of airflow from the UUT into the expansion tank (back-flow) lower than min. allowed flow.</li> <li>A factory built in backflow safeguard for back flow (redundant to the min flow) prevents to set up min. flow too low. If flow is under this value a "Backflow failure" occurs.</li> <li>Re-verify that there is no upstream leak.</li> <li>Check for external leak into test cavity (e.g., from air actuated expandable seals).</li> <li>Make sure that part is stable and seals are not compressed during leak test, and volume does not contract during the stability and test time. Allow for proper seal stops and part support to overcome such cases.</li> <li>Check your test setup and allow (for trouble-shooting purpose) longer Evacuation and Stability time. Run test with software and monitor the signature.</li> </ul> |

## 12 Maintenance

## 12.1 Maintenance frequency and responsibilities

Maintenance level 1 and 2 operations are described in this manual.

Level 3 maintenance operations require a technician from the Pfeiffer Vacuum Service network.

#### **WARNING**

Risk of erroneous readings (accepting NOK product)

- The verification orifice is an integral part of the equipment.
  - Under no circumstances should it be opened or tampered with.

#### **WARNING**

#### Risk of equipment damage and/or erroneous readings

The equipment should only be serviced by trained and authorized personnel.

If for any reason, the equipment needs to be opened for troubleshooting or service, contact Pfeiffer Vacuum for authorization before opening.



If the equipment is not performing as expected, please contact Pfeiffer Vacuum. Do not attempt to repair the equipment without first contacting Pfeiffer Vacuum, Pfeiffer Vacuum service technician or a Pfeiffer Vacuum authorized service professional.

| Operation                                                                                                                                                                 | Number of hours in use                                                                                   | Level 1)  | Site 2) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|---------|
| Filters                                                                                                                                                                   | ·                                                                                                        |           |         |
| Test port filter checking                                                                                                                                                 | According to conditions of use                                                                           | 1         | OS      |
| Test port filter cleaning/replacement                                                                                                                                     | According to conditions of use                                                                           | 1         | OS      |
| Exhaust valve filter checking                                                                                                                                             | According to conditions of use                                                                           | 1         | OS      |
| Exhaust valve filter cleaning/replacement                                                                                                                                 | According to conditions of use                                                                           | 1         | OS      |
| Sensor filter checking                                                                                                                                                    | According to conditions of use                                                                           | 2         | OS      |
| Sensor filter cleaning/replacement                                                                                                                                        | According to conditions of use                                                                           | 2         | OS      |
| Vacuum pump                                                                                                                                                               |                                                                                                          |           |         |
| Tip seal replacement                                                                                                                                                      | 3 years                                                                                                  | 2         | OS      |
| Performance verification                                                                                                                                                  |                                                                                                          |           |         |
| Verification                                                                                                                                                              | According to conditions of use                                                                           | 1         | OS      |
| Verification orifice                                                                                                                                                      |                                                                                                          |           |         |
| Calibration                                                                                                                                                               | According to conditions of use                                                                           | 3         | OS/WS   |
| Sensor                                                                                                                                                                    |                                                                                                          |           |         |
| Calibration                                                                                                                                                               | Every year (recommended)                                                                                 | 3         | OS/WS   |
| <ol> <li>Maintenance level</li> <li>1: Operator (User)</li> <li>2: Technician with Pfeiffer Vacuum training</li> <li>3: Pfeiffer Vacuum maintenance technician</li> </ol> | <ul> <li>2) Maintenance site</li> <li>OS: on customer site</li> <li>WS: Pfeiffer Vacuum servi</li> </ul> | ce center |         |

### 12.2 Filters maintenance

#### **Pneumatic filter**

The equipment is equipped with a filter at the pneumatic inlet.

Clean and maintain the filter.

#### Sensor filter

The sensor is provided with an in-line filter. The filter is at the inlet of the sensor.

Periodically check, clean, or replace this filter.

#### **Test port filter**

1. Periodically check, clean, or replace this filter.

### 12.3 Sensor periodic calibration

The sensor is a measuring device.

Periodic calibration, typically annually, by authorized personnel and standards is recommended to meet end user quality control requirements.

### 12.4 Vacuum pump



See HiScroll 6 operating instructions for use and maintenance (see chapter "Applicable documents")

#### Tip seal

- If HiScroll 6 pump is serviced, ensure proper "AutoStart" function.
- Use buttons on HiScroll 6 to set AutoStart and verify pump is not in standby.
- 1. Apply power to the pump.
- Press and hold the On/Off button for longer than 5 s. This switches on the auto start function: [P:034] = 1.

The vacuum pump itself remains deactivated. In the event of a loss and return of power, the vacuum pump returns to the operating status which was established prior to the power failure. The command is acknowledged by the yellow LED flashing for 1 s after releasing the button.

- 3. Short press the **On/Off** button to turn the pump on: [P:010] = 1.
- 4. Verify correct operation by removing power from the pump, whether by unplugging the power cord from the pump or using the cart power switch if power from the cart, for approximately 5 s, and then power it back on. It should start back up automatically after approximately 4 s.
- 5. Verify that green LED below the Standby button is not illuminated or flashing.

If it is illuminated or flashing, press it once to turn Standby off, and repeat steps 6 and 7.

If it stays illuminated or flashing after repeating steps 6 and 7, press and hold the **Standby** button for 5 s, and repeat steps 6 and 7 a third time.

## 13 Service solutions by Pfeiffer Vacuum

#### We offer first-class service

High vacuum component service life, in combination with low downtime, are clear expectations that you place on us. We meet your needs with efficient products and outstanding service.

We are always focused on perfecting our core competence – servicing of vacuum components. Once you have purchased a product from Pfeiffer Vacuum, our service is far from over. This is often exactly where service begins. Obviously, in proven Pfeiffer Vacuum quality.

Our professional sales and service employees are available to provide you with reliable assistance, worldwide. Pfeiffer Vacuum offers an entire range of services, from <u>original replacement parts</u> to <u>service</u> <u>contracts</u>.

#### Make use of Pfeiffer Vacuum service

Whether preventive, on-site service carried out by our field service, fast replacement with mint condition replacement products, or repair carried out in a <u>Service Center</u> near you – you have various options for maintaining your equipment availability. You can find more detailed information and addresses on our homepage, in the section.

#### You can obtain advice on the optimal solution for you, from your <u>Pfeiffer Vacuum representa-</u> tive.

#### For fast and smooth service process handling, we recommend the following:



- 1. Download the up-to-date form templates.
  - <u>Explanations of service requests</u>
  - <u>Service requests</u>
  - Contamination declaration
- a) Remove and store all accessories (all external parts, such as valves, protective screens, etc.).
- b) If necessary, drain operating fluid/lubricant.
- c) If necessary, drain coolant.
- 2. Complete the service request and contamination declaration.



3. Send the forms by email, fax, or post to your local Service Center.



4. You will receive an acknowledgment from Pfeiffer Vacuum.



#### Submission of contaminated products

No microbiological, explosive, or radiologically contaminated products will be accepted. Where products are contaminated, or the contamination declaration is missing, Pfeiffer Vacuum will contact you before starting service work. Depending on the product and degree of pollution, **additional decontamination costs** may be incurred.



PFEIFFER VACUUM

- 5. Prepare the product for transport in accordance with the provisions in the contamination declaration.
- a) b)
- Neutralize the product with nitrogen or dry air. Seal all openings with blind flanges, so that they are airtight.
- c) Shrink-wrap the product in suitable protective foil.d) Package the product in suitable, stable transport containers only.
- e) Maintain applicable transport conditions.
- 6. Attach the contamination declaration to the outside of the packaging.
- 7. Now send your product to your local Service Center.
- 8. You will receive an acknowledgment/quotation, from Pfeiffer Vacuum.

Our sales and delivery conditions and repair and maintenance conditions for vacuum devices and components apply to all service orders.

## 14 Accessories

| Accessory            | Model                 | Part Number |
|----------------------|-----------------------|-------------|
| Software             | LeakTek               | 2000079216  |
|                      | LeakRx                | 2000081383  |
| Verification orifice | 0.5 micron equivalent | 2000222723  |
|                      | 1 micron equivalent   | 2000222724  |
|                      | 2 micron equivalent   | 2000222725  |
|                      | 5 micron equivalent   | 2000222727  |
|                      | 10 micron equivalent  | 2000222728  |
|                      | 15 micron equivalent  | 2000222729  |
|                      | 20 micron equivalent  | 2000222730  |
|                      | 30 micron equivalent  | 2000222731  |

## 15 Technical data and dimensions

## 15.1 Technical characteristics

| Characteristics                |                             | SpeedAir 3050                            |
|--------------------------------|-----------------------------|------------------------------------------|
| Test method                    |                             | Mass Extraction                          |
| Power                          |                             | 115 VAC - 50/60 Hz                       |
|                                |                             | 220 VAC - 50/60 Hz                       |
| Flow sensor                    |                             | IMFS (Intelligent Molecular Flow Sensor) |
| Sensitivity                    |                             | tT 1 micron defect size                  |
| Operating temperature (r       | nin./max.)                  | 15–45 °C (59–83 °F)                      |
| Operating humidity (min./      | /max.)                      | 30–80%                                   |
| Test pressure range            |                             | 1–20 Torr (1.3– 27mbar abs)              |
| Pneumatic supply               | Gas                         | Air (pilot operated valves)              |
|                                | Quality                     | 1.3.1 according to ISO 8573-1            |
|                                | Pressure (min.–max.)        | 4.5–10 bar rel. (65–145 psig)            |
| Nitrogen supply                | Use                         | Recommended for chamber venting          |
|                                | Nitrogen pressure (minmax.) | 140–690 mbar rel. (2–10 psig)            |
| Operating system               | -                           | Windows 10                               |
| User interface                 |                             | 10" Multi-touch Full HD color screen     |
| LeakRx software                |                             | 21 CFR Part 11 compliant                 |
| Stored test Setup ID (recipes) |                             | Unlimited                                |
| Network connection             |                             | 1 x LAN (RJ45)                           |
| Interfaces                     |                             | USB, Wired Ethernet                      |
| Discrete inputs                |                             | Start, Stop, Test Type Change            |
| Analog inputs                  |                             | 2 x 0–5 V                                |
| Discrete outputs               |                             | Clamp, Exhaust, Custom, Test Type, A/D   |
| Analog outputs                 |                             | 2 x AO                                   |
| Dimensions (L x W x H)         | Display closed              | 922 x 601 x 1,129 mm (36 x 24 x 44 inch) |
|                                | Display open                | 922 x 601 x 1,397 mm (36 x 24 x 55 inch) |
| Weight (including trolley)     |                             | 127 kg (280 lbs)                         |
| Noise level                    |                             | < 53 dB(A)                               |

## 15.2 Compressed dry air (CDA) characteristics

| Composition                                                 | ≈ 80 % N + ≈ 20 % O <sub>2</sub>                                |
|-------------------------------------------------------------|-----------------------------------------------------------------|
| Туре                                                        | Quality 1.3.1. according to standard ISO 8573-1                 |
| Pressure                                                    | Minimum = 4.5·10 <sup>3</sup> hPa (4.5 bar) relative (65 psig)  |
|                                                             | Maximum = 10.0·10 <sup>3</sup> hPa (10 bar) relative (145 psig) |
| Temperature                                                 | 15–45 °C (stabilized temperature) <sup>1)</sup>                 |
| Tubing diameter 1/4" or 6 mm                                |                                                                 |
| 1) For a higher temperature range, consult Pfeiffer Vacuum. |                                                                 |

## 15.3 Venting gas characteristics

| Туре                                                        | CDA - Nitrogen                    |  |
|-------------------------------------------------------------|-----------------------------------|--|
| Purity                                                      | ≥ Alphagaz 1 (Air Liquide) or N50 |  |
| Residual concentration                                      | < 5 ppm                           |  |
| 1) For a higher temperature range, consult Pfeiffer Vacuum. |                                   |  |

| Pressure                                                    | Minimum = 138 hPa (0.14 bar) relative (2 psig)  |
|-------------------------------------------------------------|-------------------------------------------------|
|                                                             | Maximum = 690 hPa (0.7 bar) relative (10 psig)  |
| Temperature                                                 | 15–45 °C (stabilized temperature) <sup>1)</sup> |
| Tube diameter                                               | 1/4" or 6 mm                                    |
| 1) For a higher temperature range, consult Pfeiffer Vacuum. |                                                 |

## 15.4 Environmental conditions

| Use                                                         | Indoor, clean, dust-free room                                                                                            |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
|                                                             | Not use in wet or condensing environments                                                                                |  |
| Installation altitude                                       | Up to 2000 m                                                                                                             |  |
| Protection rating                                           | IP20                                                                                                                     |  |
| Ambient operating temperature                               | 10–45 °C (stabilized temperature) <sup>1)</sup>                                                                          |  |
| Storage temperature                                         | 5–55 °C                                                                                                                  |  |
| Hygrometry                                                  | 80 % for temperatures up to 31 $^\circ\text{C}$ and decreasing linearly to 50 % relative humidity at 40 $^\circ\text{C}$ |  |
| Transient overvoltage protection                            | Category II                                                                                                              |  |
|                                                             | IEC overvoltage category II standard                                                                                     |  |
| Pollution degree                                            | Level 2                                                                                                                  |  |
| 1) For a higher temperature range, consult Pfeiffer Vacuum. |                                                                                                                          |  |
|                                                             |                                                                                                                          |  |

## 15.5 Dimensions

Dimensions in mm







## 16 Appendix

## 16.1 Calculations

### 16.1.1 Density

$$D = \frac{P + Q \times V_3}{G_1 \times (T + 273.15)}$$

| D              | Density of the gas in mg/cc                                              |
|----------------|--------------------------------------------------------------------------|
| R              | Constant of the gas (for example, Air = 287)                             |
| Т              | Temperature of the gas in °C                                             |
| Q              | Volumetric flow in cc/min. (mL/min)                                      |
| V <sub>3</sub> | Flow compensated pressure coefficient (see chapter "Command parameters") |
| Z              | Gas compressibility coefficients                                         |

### 16.1.2 Flow measurement

Mass flow measurement for the transitional and molecular flow regime

$$\frac{dM}{dt} = C_1 + C_2 x + C_3 x^2 + C_4 x^3$$

| x                                                                 | Count reading from the capacitance sensor                                                               |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Q                                                                 | Volumetric flow measurement in cc/min. (mL/min)                                                         |
| dM/dt                                                             | Mass flow in µg/cc (micro-gram/cc)                                                                      |
| C <sub>1</sub> , C <sub>2</sub> , C <sub>3</sub> , C <sub>4</sub> | Flow coefficients (see chapter "Command parameters")                                                    |
| B <sub>3</sub> , B <sub>4</sub>                                   | Temperature/Viscosity compensation flow coefficients (see chapter "Command parameters", default is "0") |
| H <sub>3</sub> , H <sub>4</sub>                                   | Pressure compensation flow coefficients (see see chapter "Command parame-<br>ters", default is "0")     |
| Т                                                                 | Temperature in °C                                                                                       |
| Р                                                                 | Pressure in kPa                                                                                         |

### 16.1.3 Mass flow to volumic flow

$$Q = \frac{dM / dt}{\rho}$$

| dM/dt | Mass flow in µg/cc (micro-gram/cc)  |
|-------|-------------------------------------|
| Q     | Volumetric flow in cc/min. (mL/min) |
| ρ     | Density in µg/cc                    |

### 16.1.4 Mass extracted

$$M = \int_{t_0}^{Ttest} \frac{dM}{dt} x dt$$

| Μ                 | Mass extracted                     |
|-------------------|------------------------------------|
| dM/dt             | Mass flow in µg/cc (micro-gram/cc) |
| t <sub>o</sub>    | Starting time of the test step     |
| T <sub>test</sub> | Ending time of the test step       |

### 16.1.5 Temperature calculation

 $T = B_2 + B_1 X$ 

| Т                               | Temperature in °C                                           |
|---------------------------------|-------------------------------------------------------------|
| B <sub>1</sub> , B <sub>2</sub> | Temperature coefficients (see chapter "Command parameters") |
| X                               | Count reading from the temperature sensor                   |

### 16.1.6 Pressure calculation

 $\mathsf{P}=\mathsf{H}_2+\mathsf{H}_1\mathsf{X}$ 

| Р                               | Pressure in kPa                                          |  |
|---------------------------------|----------------------------------------------------------|--|
| H <sub>1</sub> , H <sub>2</sub> | Pressure coefficients (see chapter "Command parameters") |  |
| x                               | Count reading from the pressure sensor                   |  |

## 16.2 Command parameters

i

- Density is in the unit of µg/cc.
  - Time is in the unit of 10 ms.
- All configuration coefficients are in the selected flow unit or kPa if applicable, except for item 5.
- If X6 is set to 0, RS-232 data acquisition response is in the selected unit.
   If X6 is set to other than 0, RS-232 data acquisition response is in °C, base flow unit or kPa.

#### A Group

| Command | Туре  | Description                                                                      |
|---------|-------|----------------------------------------------------------------------------------|
| A1      | Float | Analog output full scale corresponding flow in selected flow unit                |
| A2      | Float | D/A calibration, Count/kPa                                                       |
| A3      | Float | Backflow if count reading in DP is less than A3                                  |
| A4      | Float | Barometric condition of the pressure in kPa                                      |
| A5      | Float | Minimum pressure for volume flow sensor or Maximum pressure for mass flow sensor |

#### B Group

| Command | Туре  | Description                                               |
|---------|-------|-----------------------------------------------------------|
| B1      | Float | Temperature calibration slope (C/Count)                   |
| B2      | Float | Temperature calibration offset (C)                        |
| B3      | Float | Temperature compensation flow coef, 2 <sup>nd</sup> order |
| B4      | Float | Temperature compensation flow coef (Linear)               |
| B5      | Float | Calibrated temperature in °C                              |

#### C Group

| Command | Туре  | Description                                                |
|---------|-------|------------------------------------------------------------|
| C1      | Float | Offset flow coef (cc/min or µg/min)                        |
| C2      | Float | First-order flow coef (cc/min/count or µg/min/count)       |
| C3      | Float | Second-order flow coef (cc/min/count2 or µg/min/count2)    |
| C4      | Float | Third-order flow coef (cc/min/count3 or µg/min/count3)     |
| C5      | Float | Lo offset flow coef (cc/min or µg/min)                     |
| C6      | Float | Lo first-order flow coef (cc/min/count or µg/min/count)    |
| C7      | Float | Lo second-order flow coef (cc/min/count2 or µg/min/count2) |
| C8      | Float | Lo third-order flow coef (cc/min/count3 or µg/min/count3)  |

| Command | Туре  | Description                    |
|---------|-------|--------------------------------|
| C9      | Float | Percent divider % (such as 10) |
| CA      | Float | Smooth % (such as 1)           |
| СВ      | Float | Calibrated gas constant        |
| CC      | Float | Calibrated gas viscosity       |

**D Group** For adaptive flow test

| Command | Туре  | Description                                          |
|---------|-------|------------------------------------------------------|
| D1      | Float | Buffer time in % of the test period                  |
| D2      | Float | Safety multiplier = 2 to 6                           |
| D3      | Float | Test start leak window Max in multiplier of V2 (1.2) |
| D4      | Float | Test start leak window Min in multiplier of V2 (0.8) |
| D5      | Float | Alpha (curve) (0-1)                                  |

#### G Group

| Command | Туре  | Description                                                                                                      |
|---------|-------|------------------------------------------------------------------------------------------------------------------|
| G1      | Float | Universal constant of the gas (287 for air)<br>Necessary if density is used in calculation                       |
| G2      | Float | Viscosity at 0 °C                                                                                                |
| G3      | Float | Viscosity change per °C                                                                                          |
| G4      | Float | Density of the gas at standard barometric condition in $\mu$ g/cc, used for standard flow unit such as SCCM, etc |
| G5      | Float | Sensor alpha (kPa/(cc/min))<br>G5 = (DP range) / (Sensor full scale) · 0.24884                                   |

#### H Group

| Command | Туре  | Description                                             |
|---------|-------|---------------------------------------------------------|
| H1      | Float | Pressure calibration slope (kPa/count)                  |
| H2      | Float | Pressure calibration offset (kPa)                       |
| H3      | Float | Pressure compensation flow coef (2 <sup>nd</sup> order) |
| H4      | Float | Pressure compensation flow coef (Linear)                |
| H5      | Float | Calibrated pressure in kPa                              |
| H6      | Float | Pressure calibration slope (kPa/Count)                  |
| H7      | Float | Pressure calibration offset (kpa)                       |
|         |       |                                                         |

#### K Group

| Command | Туре  | Description                                                                                     |
|---------|-------|-------------------------------------------------------------------------------------------------|
| K1      | Float | Pressure setting for leak test mode (kPa)                                                       |
| K2      | Float | Pressure upper limit (kPa)                                                                      |
| K3      | Float | Pressure lower limit (kPa)                                                                      |
| K5      | Float | Pressure setting for leak test mode (kPa) for large leak check with du-<br>al pressure settings |
| K6      | Float | Pressure upper limit (kPa) for large leak check with dual pressure set-<br>tings                |
| K7      | Float | Pressure lower limit (kPa) for large leak check with dual pressure set-<br>tings                |
| K9      | Float | Pressure lower limit (kPa) for external pressure switch                                         |
| KA      | Float | Pressure higher limit (kPa) for external pressure switch                                        |

#### L Group

| Command | Туре   | Description                   |
|---------|--------|-------------------------------|
| L1 LE   | String | Up to 15 characters per label |

#### M Group

| Command | Туре | Description                                                            | Value |
|---------|------|------------------------------------------------------------------------|-------|
| M1      | Long | This is not saved in the memory.                                       | -     |
|         |      | Calibrate the LCD                                                      | M1;1  |
|         |      | Activate the LCD                                                       | M1;2  |
|         |      | Deactivate the LCD                                                     | M1;3  |
|         |      | Change the test type                                                   | M1;6  |
|         |      | Start test                                                             | M1;8  |
|         |      | Stop test                                                              | M1;9  |
| M2      | Long | Pass sound period (x 10 ms)                                            | -     |
|         |      | Set 0 to disable                                                       |       |
| M3      | Long | Fail sound period (x 10 ms)                                            | -     |
|         |      | Set 0 to disable                                                       |       |
| M4      | Long | Stop sound period (x 10 ms)                                            | -     |
|         |      | Set 0 to disable                                                       |       |
| M5      | Long | Automatically deactivate to screen saver                               | -     |
|         |      | The timer setting after Idle condition (x 10 ms)                       |       |
|         |      | Set 0 to disable                                                       |       |
| M6      | Long | The setting is based on the combination of the follow-<br>ing setting. | -     |
|         |      | Display/Hide the second pressure                                       | 0x400 |
|         |      | Switch the internal pressure and external pressure                     | 0x200 |
|         |      | Alternative location                                                   | 0x100 |
|         |      | Temperature reading                                                    | 0x08  |
|         |      | Enable remote command start/stop                                       | 0x20  |
|         |      | 0: Disable                                                             |       |
|         |      | 1: Enable                                                              |       |
|         |      | Enable DIO start/stop                                                  | 0x10  |
|         |      | 0: Enable                                                              |       |
|         |      | 1: Disable                                                             |       |
|         |      | [Stop] button                                                          | 0x01  |
|         |      | [Start] button                                                         | 0x04  |
|         |      | [Type] button                                                          | 0x02  |
| M7      | Long | Brightness                                                             | 1–255 |

#### O Group

| Command | Туре    | Description                             | Value |
|---------|---------|-----------------------------------------|-------|
| 01 OE   | Integer | The last byte is configured as follows. | -     |
|         |         | Clamp                                   | 0x80  |
|         |         | Pres/Test                               | 0x40  |
|         |         | Exhaust                                 | 0x20  |
|         |         | Evac/Balance                            | 0x10  |
|         |         | Pre-Evac                                | 0x08  |
|         |         | Isolate                                 | 0x04  |
|         |         | Customer1                               | 0x02  |
|         |         | Customer2                               | 0x01  |

### P Group

| r Group |       |                                                          |
|---------|-------|----------------------------------------------------------|
| Command | Туре  | Description                                              |
| P1      | Float | PID proportional coefficient                             |
| P2      | Float | PID integral coefficient                                 |
| P3      | Float | PID differential coefficient                             |
| P4      | Float | Flow setting for flow control mode in selected flow unit |

#### S Group

| Command | Туре   | Description                                                                         |
|---------|--------|-------------------------------------------------------------------------------------|
| S1      | String | Serial Number: Up to 14 characters are allowed to enter.                            |
|         |        | For example: Serial number XX XX XXX XXX X XXX                                      |
|         |        | $XX^{(1)}XX^{(2)}XXX^{(3)}XXX^{(4)}X^{(5)}XXX^{(6)}$                                |
|         |        | ① = Release of month i.e. 06 = June                                                 |
|         |        | ② = Release of year i.e. 04 = 2004                                                  |
|         |        | ③ = 3digit serial number valid from 001 to 999 i.e. 022                             |
|         |        | ④ = Maximum flow i.e. 090 = 90 ,120 = 120, 12H = 1200,<br>12K = 12000               |
|         |        | (5) = Flow unit i.e. C = CCM, L = LPM, U = ug/min, M = mm <sup>3</sup> /m           |
|         |        | ⑥ = Maximum pressure in psia i.e. 500 = 500 psia, 12H = 1200 psia, 12K = 12000 psia |
| S2      | String | Read only                                                                           |
|         |        | Return version number such as 020000 for version 2.0.0                              |

### T Group

```
i
```

All T group settings are defined as long integer (32 Bit).

| Command | Туре    | Built-in timers                | Customized timers   |
|---------|---------|--------------------------------|---------------------|
| T1      | Integer | Evacuating delay time in 10 ms | Step timer in 10 ms |
| T2      | Integer | Stability delay time in 10 ms  | Ditto               |
| Т3      | Integer | Test time in 10 ms             | Ditto               |
| T4      | Integer | Clamping delay time in 10 ms   | Ditto               |
| Т5      | Integer | N/A                            | Ditto               |
| Т6      | Integer | N/A                            | Ditto               |
| Т7      | Integer | N/A                            | Ditto               |
| T8-TE   | Integer | N/A                            | Ditto               |

| Command | Туре    | Description                                                                                                |
|---------|---------|------------------------------------------------------------------------------------------------------------|
| U1      | Integer | Address 1-9                                                                                                |
| U2      | Integer | Mode                                                                                                       |
|         |         | 4 <sup>th</sup> byte                                                                                       |
|         |         | Sensor type:                                                                                               |
|         |         | Conventional instrument: 0                                                                                 |
|         |         | Adaptive instrument: 1     Elow controller: 2                                                              |
|         |         | <ul> <li>Mass extraction method: 3</li> </ul>                                                              |
|         |         | Steady state predictor: 4                                                                                  |
|         |         | <u>3<sup>rd</sup> byte</u>                                                                                 |
|         |         | 0x0 0 1 1 0 0 1 1                                                                                          |
|         |         | $0 \times 0 \ 0 \ 1^{(1)} \ 1^{(2)} \ 0^{(3)} \ 0 \ 1^{(4)} \ 1^{(5)}$                                     |
|         |         | • (1) Bit 0<br>• (2) Bit 1: Deference flow function                                                        |
|         |         | 3 Bit 2: Quick reference flow function                                                                     |
|         |         | • (4) Bit 4: When '1', sensor is configured for 4 <sup>th</sup> analog input                               |
|         |         | <ul> <li>(5) Bit 5: PID pressure sensor selection; 0 = internal pressure sensor</li> </ul>                 |
|         |         |                                                                                                            |
|         |         | $0 \times 1 \times $               |
|         |         | 0x 1 <sup>1</sup> 1 <sup>2</sup> 1 <sup>3</sup> 1 <sup>4</sup> 1111 <sup>5</sup>                           |
|         |         | (1) Vacuum testing message                                                                                 |
|         |         | • 1 - Vacuum                                                                                               |
|         |         | ② Digital input pulse/level                                                                                |
|         |         | set to 1 if level detection is desirable                                                                   |
|         |         | ③ Relative measurement                                                                                     |
|         |         | ④ Flow calibration                                                                                         |
|         |         | <ul> <li>one set of calibration: 0</li> <li>two set of calibration: 1</li> </ul>                           |
|         |         | ⑤ Valve control                                                                                            |
|         |         | <ul> <li>standard: 0x0 (disable C1, X2, X3, XA)</li> <li>customized: 0x1 - 0xF</li> </ul>                  |
|         |         | <u>1<sup>st</sup> byte</u>                                                                                 |
|         |         | Bit 0: Measurement unit                                                                                    |
|         |         | <ul> <li>Mass flow base: 1 µg/min as base unit</li> <li>Volume flow base: 0 cc/min as base unit</li> </ul> |
|         |         | Bit 1: Gas compensation                                                                                    |
|         |         | <ul> <li>No coef compensation: 0</li> </ul>                                                                |
|         |         | Bit 2: 3 <sup>rd</sup> test type on                                                                        |
|         |         | Bit 3: 3 <sup>rd</sup> and 4 <sup>th</sup> test type on                                                    |
| U3      | Integer | Temperature unit                                                                                           |
|         |         | 0 = Degree Celsius (°C)                                                                                    |
|         |         | 1 = Degree Fahrenheit (°F)                                                                                 |
| U4      | Integer | Pressure unit                                                                                              |
|         |         | 0: kPa-a                                                                                                   |
|         |         | 1: kg/c                                                                                                    |
|         |         | 2: psia                                                                                                    |
|         |         | $4 \cdot inH_{2}O$                                                                                         |
|         |         | 5. nsia                                                                                                    |
|         |         | 6. Torr                                                                                                    |
|         |         | 7: kPa-a                                                                                                   |
|         |         | 8: bar-a                                                                                                   |
|         | 1       |                                                                                                            |

| Command | Туре    | Description                                                                                                                                        |
|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| U5      | Integer | Flow unit                                                                                                                                          |
|         |         | High nibble                                                                                                                                        |
|         |         | <ul> <li>0: cc</li> <li>1: mm<sup>3</sup></li> <li>2: liter</li> <li>3: gal</li> <li>4: gram</li> <li>5: µg XXXX</li> <li>6: µg XXXX</li> </ul>    |
|         |         | Lower nibble                                                                                                                                       |
|         |         | <ul> <li>0: sec</li> <li>1: min</li> <li>2: hour</li> <li>3: SCCM, etc</li> </ul>                                                                  |
|         |         | 16 x High nibble + Low nibble                                                                                                                      |
|         |         | Besides XXXXXX (*x)<br>• 7x16+3: SCCM<br>• 8x16+3: SLM<br>• 9x16+3: SCFM<br>• 7x16+4: SCCSe-6                                                      |
| U6      | Integer | 0: one string of response to SQ1 command                                                                                                           |
|         |         | 1: two string of response to SQ1 command                                                                                                           |
| U7      | Integer | Baud Rate                                                                                                                                          |
|         |         | <ul> <li>0 and else: 9600</li> <li>2: 19200</li> <li>4: 38400</li> <li>12: 115200</li> </ul>                                                       |
|         |         | The parameter takes effect after the power reset of the sensor.                                                                                    |
| U8      | Integer | Hold value time in U8 x 10 ms XXXXXX (*x)                                                                                                          |
| U9      | Integer | Set U9 = 0 to disable special features                                                                                                             |
|         |         | <ul> <li>1: disable relative measurement</li> <li>2: disable mass extraction test</li> <li>3: disable early detection for adaptive Test</li> </ul> |
| UA      | Integer | Start cycle counter.                                                                                                                               |
|         |         | Cycle number can be shown on System and Maintenance screens. XXXX                                                                                  |
| UB      | Integer | Reference flow function flag. 1 Byte                                                                                                               |
|         |         | Within each byte of the above value the bit positions are numbered as shown: 7 6 5 4 3 2 1 0                                                       |
|         |         | Byte U<br>Reference flow activity                                                                                                                  |
|         |         | <ul> <li>0 = Reference flow disabled from setup</li> </ul>                                                                                         |
|         |         | <ul> <li>1 = Reference flow enabled from setup</li> </ul>                                                                                          |
|         |         | Byte 4                                                                                                                                             |
|         |         | <ul> <li>0 = 111 reference flow activated if it is enabled</li> <li>1 = TT1 reference Fflow deactivated</li> </ul>                                 |
|         |         | Byte 5<br>• 0 = TT2 reference flow activated if it is enabled                                                                                      |
|         |         | <ul> <li>1 = TT2 reference flow deactivated</li> <li>8 ste 6</li> </ul>                                                                            |
|         |         | <ul> <li>0 = TT3 reference flow activated if it is enabled</li> <li>1 = TT3 reference flow deactivated</li> </ul>                                  |
|         |         | <ul> <li>0 = TT4 reference flow activated if it is enabled</li> <li>1 = TT4 reference flow deactivated</li> </ul>                                  |

#### V Group

| Туре  | Description                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------|
| Float | Min. flow alarm for leak test mode in cc/min, $\mu g/\text{min}$ or selected unit based on X6               |
| Float | Max. flow alarm for leak test mode in cc/min. or selected unit based on X6                                  |
|       | For mass extraction method, max. leak alarm for leak test mode in cc, $\mu g,$ or selected unit based on X6 |
| Float | Flow compensation to DP in kPa/(cc/min) or kPa/(µg/min)                                                     |
| Float | Min. flow alarm for relative measurement baseline flow in cc/min, $\mu g/min$ or selected unit based on X6  |
| Float | Max. flow alarm for relative measurement baseline flow in cc/min. or selected unit based on X6              |
| Float | Large leak flow alarm flow in cc/min. or selected unit based on X6                                          |
|       | Type<br>Float<br>Float<br>Float<br>Float<br>Float<br>Float                                                  |

## X Group

| • | The following conditions must be met for the sensor to function properly. |
|---|---------------------------------------------------------------------------|
|   | • X1 < X3 < XA < X2                                                       |
|   | • XB < X9 < X3                                                            |
|   | • 1 < X3                                                                  |
|   | • 1 < XB                                                                  |
|   |                                                                           |

| Command | Туре    | Description                                                                                                                                       |  |
|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| X1      | Integer | Pressure switch on check step No                                                                                                                  |  |
|         |         | Lowest byte = Step No                                                                                                                             |  |
|         |         | 2 <sup>nd</sup> lowest<>0, advance to the next step once the PS is on                                                                             |  |
| X2      | Integer | Pressure switch off check step No                                                                                                                 |  |
|         |         | Lowest byte = Step No                                                                                                                             |  |
|         |         | 2 <sup>nd</sup> lowest<>0, advance to the next step once the PS is off                                                                            |  |
| X3      | Integer | Leak check step                                                                                                                                   |  |
| X4      | Integer | Buffer size: valid from 4 to 100                                                                                                                  |  |
| X5      | Integer | Enable flag: deplete the pressure after the test failure                                                                                          |  |
| X6      | Integer | Default unit is used if X6 <>0                                                                                                                    |  |
|         |         | Flow in cc/min or $\mu$ g/min, pressure in kPa and temperature in °C                                                                              |  |
| X9      | Integer | Flow baseline Step No                                                                                                                             |  |
| XA      | Integer | Stop test step No                                                                                                                                 |  |
| XB      | Integer | Large leak test step No                                                                                                                           |  |
|         |         | Lowest byte = Step No                                                                                                                             |  |
|         |         | $2^{nd}$ lowest<>0, the steps before and on large leak are set based on K5 and check against K6 and K7.                                           |  |
| XC      | Integer | Basic check                                                                                                                                       |  |
|         |         | Each bit of the integer representing the step in which the basic check is enforced.                                                               |  |
|         |         | The basic check verifies the sensor is not saturated and pressure is not out of settings ( $P_{Hi}$ and $P_{Lo}$ ). "XC"                          |  |
|         |         | <ul> <li>If XC was set such as 0xFF, the gross leak check is disabled.</li> <li>Any basic step check after leak check step is ignored.</li> </ul> |  |
|         |         | Example of setting: XC=0x06 in step 2 and step 3 the basic check is enforced.                                                                     |  |

| Command | Туре    | Description                                                                                                                                                  |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XD      | Integer | External pressure on step No<br>Lowest byte = Step No<br>2 <sup>nd</sup> lowest<>0, advance to the next step once the external pressure is<br>in range.      |
| XE      | Integer | External pressure off step No<br>Lowest byte = Step No<br>2 <sup>nd</sup> lowest<>0, advance to the next step once the external pressure is<br>out of range. |

#### Y Group

| 1 Oloup |       |                                                          |
|---------|-------|----------------------------------------------------------|
| Command | Туре  | Description                                              |
| Y1      | Float | Reference flow the 1 <sup>st</sup> point time parameters |
| Y2      | Float | Reference flow the 2 <sup>nd</sup> point time parameters |
| Y3      | Float | Reference flow the 3 <sup>rd</sup> point time parameters |
| Y4      | Float | Reference flow the 4 <sup>th</sup> point time parameters |
| Y5      | Float | Reference flow the 5 <sup>th</sup> point time parameters |

#### Z Group

| Command | Туре  | Description                                              |
|---------|-------|----------------------------------------------------------|
| Z1      | Float | Reference flow the 1 <sup>st</sup> point flow parameters |
| Z2      | Float | Reference flow the 2 <sup>nd</sup> point flow parameters |
| Z3      | Float | Reference flow the 3 <sup>rd</sup> point flow parameters |
| Z4      | Float | Reference flow the 4 <sup>th</sup> point flow parameters |
| Z5      | Float | Reference flow the 5 <sup>th</sup> point flow parameters |



# **EC Declaration of Conformity**

This declaration of conformity has been issued under the sole responsibility of the manufacturer.

Declaration for product(s) of the type:

Speed Air S3050 instrument

We hereby declare that the listed product satisfies all relevant provisions of the following **European Directives**.

Machinery 2006/42/EC (Annex II, No. 1 A) Low-voltage 2014/35/EU Electromagnetic Compatibility 2014/30/EU Restriction of Hazardous Substances 2011/65/EU

Harmonized standards and national standards and specifications which have been applied:

UL 61010-1:2012 Ed.3+R:19Jul2019 CSA C22.2#61010-1-12:2012 Ed.3+U1;U2;A1 IEC 61010-1:2010 IEC 61010-1:2010/AMD1:2016 47 CFR, Part 15 Subpart B, §15.107 and §15.109, Class A ICES-003, Issue 7 Updated 2020 EN 61326-1:2013 IEC 61326-1:2020 Class A and Basic Immunity

The person authorized for compiling the technical file is Mr. Bill Hathaway, Pfeiffer Vacuum Inc., 4037 Guion Lane, Indianapolis, IN 46268 USA.

Signature : Signed by:

Jason Wartell — 13AAB156807242C...

Pfeiffer Vacuum Inc. 4037 Guion Lane Indianapolis, IN 46268 USA

Jason Wartell Vice President of Systems & Supply Chain Date 11/27/2024 | 8:09 AM PST

CE



## **VACUUM SOLUTIONS FROM A SINGLE SOURCE**

Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide, technological perfection, competent advice and reliable service.

## **COMPLETE RANGE OF PRODUCTS**

From a single component to complex systems: We are the only supplier of vacuum technology that provides a complete product portfolio.

## **COMPETENCE IN THEORY AND PRACTICE**

Benefit from our know-how and our portfolio of training opportunities! We support you with your plant layout and provide first-class on-site service worldwide.

Are you looking for a perfect vacuum solution? Please contact us

**Pfeiffer Vacuum GmbH** Headquarters • Germany T +49 6441 802-0 info@pfeiffer-vacuum.de

www.pfeiffer-vacuum.com

